

# ஸ்ரீ-ல-ஸ்ரீ காசிவாசி சுவாமிநாத சுவாமிகள் கலைக் கல்லூரி தருப்பனந்தாள் – 612504

S.K.S.S ARTS COLLEGE, THIRUPPANANDAL - 612504







# **QUESTION BANK**

Title of the Paper

# **GRAPH THEORY**

COURSE - III B.Sc., Maths

Prepared by

RUPPANANDAL

P.ELAKKIYA M.Sc., B.Ed., Assistant Professor Department of Mathematics

# MAJOR BASED ELECTIVE II (A)

## **GRAPH THEORY**

#### **Objectives:**

- 1. To introduce the notion of graph theory and its applications.
- 2. To learn the techniques of combination in Graph Theory.

#### UNIT I

Introduction - The Konigsberg Bridge Problem - Graphs and subgraphs: Definition and Examples - Degrees - Subgraphs - Isomorphism. –independent sets and coverings.

#### UNIT II

Matrices - Operations on Graphs - Walks, Trails and Paths – Connectedness and Components - Eulerian Graphs.

#### UNIT III

Hamiltonian Graphs (Omit Chavatal Theorem) - Characterization of Trees - Centre of a Tree.

#### **UNIT IV**

Planarity: Introduction - Definition and Properties - Characterization of Planar Graphs.

#### **UNIT V**

Directed Graphs: Introduction - Definitions and Basic Properties – Some Applications: Connector Problem - Kruskal's algorithm - Shortest Path Problem – Dijkstra's algorithm.

RUPPANAL

#### Textbook

1. S. Arumugam and S. Ramachandran, Invitation to Graph Theory, SciTech Publications (India) Pvt. Ltd., Chennai, 2006.

#### References

1. Narsingh Deo, Graph Theory with applications to Engineering and Computer Science, Prentice Hall of India, 2004.

2. Gary Chartrand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill Edition, 2004.

#### **GRAPH THEORY**

# UNIT – I

# CHOOSE THE CORRECT ANSWER

- 1. Which is one of the using for graph theory?
  - A) Physics and genetics
  - B) Dynamics
  - C) Genetics
  - D) None of these
- 2. Who is first written by graph theory?
  - A) Euler
  - B) Choudam
  - C) H.B.Waliker
  - D) A.R.Rao
- **3.** If  $X = \{(a, b), (a, c), (a, d)\}$  then the graph represented by adjacent
  - A) Non- adjacent
  - B) adjacent
  - C) A& B
  - D) none

**4.** Let  $X = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$ it's represented by

CATIO

- A) Graph
- B) Self loop
- C) parallel edges
- D) complete graph

**5.** If  $V = \{v_1, v_2, v_3, v_4\}$  and  $E = \{e_1, e_2, e_3, e_4, e_5\}$  then it's called a ------ graph

WEALTH

A) Pseudo graph

- B) non complete
- C) Multi graph
- D) B & C
- **6.** A regular graph of degree 3 is called
  - A) Cubic graph
  - B) isolated graph
  - C) regular graph
  - D) none of these
- 7. Which is the following statements are true?
  - A) Every cubic graph has an even number of points.
  - B) Every regular graph has an even number of points.
  - C) None of these
  - D) A & B true
- 8. Any self complementary graph has an 4n
  - A) Above statements are true
  - B) not true
  - C) Contradiction
  - D) none
- 9. The following graph of self loops and parallel edges?

WEALT

- A) Complete graph
- B) simple graph
- C) null graph
- D) general graph
- 10. Every edges in a graphs are represented by
  - A) Curve

- B) straight line
- C) long
- D) all the above

#### **ANSWERS:**

1. A 2. A 3. B 4. D 5. C 6. A 7. D 8. A 9. D 10. D

#### **TWO MARK QUESTIONS**

- 11. Define graph.
- **12.** Define simple graph.
- **13.** Define complete graph.
- 14. What is a degree.
- **15.** Define end vertices.
- 16. Define a loop (or) self loop.
- 17. Define parallel edges.
- **18.** Define Peterson graph.
- **19.** Let G be a K- regular graph with bipartition( $v_1, v_2$ ) and k>0 prove that  $|v_1| = |v_2|$ .
- 20. Define bigraph.

# **FIVE MARK QUESTIONS**

- 21. Explain regular graph?
- 22. Explain isolated graph?
- 23. The number of vertices of odd degree in a graph G is always even.
- **24.** Prove  $\Gamma G = \Gamma \overline{G}$
- **25.** A set  $S \subseteq V$  is an independent set of G iff V-S is a covering of G
- **26.** To prove that  $\alpha + \beta = P$

- 27. Explain finite and infinite graph?
- 28. Explain sub graphs?
- **29.** Let  $V = \{1, 2, 3, 4\}$  E =  $\{a, b, c, d, e, f\}$  to find a graph?
- **30.** The graph Let V=10; E=15 to find the graph?

# TEN MARK QUESTIONS

- **31.** The maximum number of lines among all P points with no triangles is  $\frac{P^2}{4}$
- **32.** Explain isomorphism and given an examples

**33.** Show that in any group of 2 (or) more people there are always 2 with exactly the same no of friends inside the group.

- **34.** Explain the Konigsberg bridge problem.
- **35**. Explain edge disjoint and vertex disjoint.
- 36. The maximum degree of any vertices in a simple graph G with n vertices is n-1
- **37.** The sum of the degrees of all vertices in a graph G is always even.
- **38.** Explain incidents and degree
- **39.** Explain the operations of graph
- 40. Explain automorphism, complement, and Ulam's conjecture.

# UNIT - II

## CHOOSE THE CORRECT ANSWERS

ALT

- 1. Which is one of the another name of a walk is
  - A) Terminals
  - B) trail
  - C) graph
  - D) tree

- 2. Which graph is beginning and ending of the same vertex?
  - A) Walk
  - B) open walk
  - C) closed walk
  - D) none of these
- 3. Which is the following statement are true?
  - A) A self loop can be included in a walk but not in a path.
  - B) A self loop can be included in a walk also referred to path.
  - C) A & B
  - D) None of these
- 4. A circuit is also called a\_\_\_\_
  - A) Triangle
  - B) curve
  - C) cycle
  - D) line
- 5. Which are the following statements are true
  - A) A closed walk of odd length contains a cycle.
  - B) An open walk of even length contains a cycle.
  - C) A closed walk of even length contains a cycle.

NEALTH

- D) None
- **6.** Let  $V = \{v_1, v_2\} \& E = \{e_1\}$  this graph is
  - A) Tree
  - B) null graph
  - C) connected graph
  - D) walk

- 7. Which are the following statements are correct?
  - A) None of these
  - B) If G is disconnected then  $\overline{G}$  is connected.
  - C) If  $\overline{G}$  is connected then g is disconnected.
  - D) B & C
- 8. Which graph is known as star of Davit?
  - A) Walk
  - B) Euler graph
  - C) path
  - D) tree
- 9. In a graph G any u-v walk contains a path.
  - A) u-v
  - B) v-u
  - C) u+v
  - D) v+u

**10.** When the graph is a path of length k.

- A)  $\delta \leq K$
- B)  $\delta < K$
- C)  $\delta \geq K$
- D) None
- ANSWERS:
- EALT 1. B 2. C 3. A 6. C 9. A 10. C 4. C 5. A 8. B 7. D

#### **TWO MARK QUESTIONS**

- **11.** Define adjacency matrix.
- **12.** Define incidence matrix.
- **13.** Define terminal vertices.
- 14. Define open walk.
- 15. Define connected graph.
- 16. Define cut point.
- **17.** Define Eulerian graph.
- **18.** Define cycle.
- **19.** Define bridge.
- 20. Define components.

#### **FIVE MARK QUESTIONS**

- 21. Explain path with given an examples
- 22. Explain walk given an examples
- 23. In a graph G any u-v walk contains a u-v path
- **24.** If  $\delta \ge K$  then G has a path of length K.
- 25. Explain circuit?
- **26**. A graph G with P points and  $\delta \ge \frac{P-1}{2}$  is connected.
- **27**. If G not connected then  $\overline{G}$  is connected.
- 28. Every non-trivial connected graph has at least 2 points which are not cut points.
- 29. Explain connected graph?
- 30. A closed walk of odd length contains a cycle?

#### **TEN MARK QUESTIONS**

**31.** Let  $G_1$  be a  $(p_1, q_1)$  graph and  $G_2$  be a  $(p_2, q_2)$  graph then

I)  $(G_1 \cup G_2)$  is a  $(p_1 + p_2, q_1 + q_2)$  graph

II)  $(G_1 + G_2)$  Is a  $(p_1 + p_2, q_1 + q_2 + p_1p_2)$  graph

III)  $(G_1 \times G_2)$  Is a  $(p_1p_2, q_1p_2 + q_2p_1)$  graph

**32**. If A is the adjacent matrix of a graph with  $V = \{v_1, v_2, \dots, v_p\}$  prove that for any  $n \ge 1$  the (i, j)<sup>th</sup> entry of A<sup>n</sup> is the no of  $v_i - v_j$  walk o length n in G

**33**. In a connected (or) disconnected graph G has exactly two vertices of odd degree then there exists a path between these two vertices.

**34**. A graph G is connected iff for any partition of V into subsets  $v_1$  and  $v_2$  there is a line of G joining a point of  $v_1$  to a point of  $v_2$ 

35. A graph G with at least two points is bipartite iff all its cycle are of even length

**36**. A line X of a connected graph G is a bridge iff X is not on any cycle of G.

**37**. A given connected graph G is an Euler graph iff all the vertices of G are of even degree.

**38**. A connected graph G is an Euler graph iff it can be decomposed into circuits.

**39**. Let V be a point of a connected graph G the following statements are equivalent

I) v is a cut point of G

II) There exists partition of v-{v} into subsets U & W. Such that for each  $u \in U$  and  $w \in W$  the point v is on every u-w path.

III) There exists two points' u & w distinct from v such that v is a u-w path.

40. Explain the types of walk?

#### UNIT – III

# CHOOSE THE CORRECT ANSWER

- 1. Who is introduced by Hamiltonian Graph?
  - A) Sir. William Hamilton
  - B) S.S Sastry
  - C) Euler
  - D) A & C
- 2. Which year introduced by Hamiltonian graph?
  - A) 1851
  - B) 1856
  - C) 1859
  - D) 1818
- 3. Which year introduced by tree?
  - A) 1920
  - B) 1858
  - C) 1817
  - D) 1857
- 4. Who is introduced by tree?
  - A) R.Balakrishnan
  - B) H.B.Waliker
  - C) Cayley
  - D) B & C

5. How many vertices and edges in Hamiltonian circuits?

CATION IS WEALTH

- A) n by n
- B) m by n

- C) n by n-1
- D) none
- 6. If we remove any one edge from Hamiltonian circuits the it's called -----?
  - A) Circuits
  - B) path
  - C) centre
  - D) none
- **7.** Let  $V = \{v_1\}$  if the graph is?
  - A) Finite graph
  - B) connected graph
  - C) tree
  - D) simple graph
- 8. Which are the following statements are true?
  - A) A tree with n vertices and n-1 edges.
  - B) A tree has n-1 vertices and n edges.
  - C) Every tree has either one centre.
  - D) None of these.
- 9. What is another name of centre?
  - A) Bicentre
  - B) eccentricity
  - C) adjacent
  - D) radius
- **10.** Which are following statements is correct?
  - A) Every disconnected graph has at least one spanning tree.

WEALTH

B) Every connected graph has at least one spanning tree.

- C) The number of vertices in a binary tree is always even.
- D) Every binary tree is a spanning tree.

#### **ANSWERS:**

1. A 2. C 3. D 4. C 5. A 6. B 7. C 8. A 9. A 10.

# TWO MARK QUSTIONS

- 11. Define Hamiltonian circuits.
- 12. Define tree.
- **13.** Define sorting tree.
- 14. Define distance.
- 15. Define centre.
- 16. Define Eccentricity.
- 17. Define rooted tree.
- 18. Define binary tree.
- 19. Define spanning tree.
- 20. Define radius.

# **FIVE MARK QUESTIONS**

21. There is one and only one path between every pair of vertices in a tree T.

**22.** In a graph G there is one and only one path between every pair of vertices G is a tree

- 23. Every binary tree is a rooted tree
- 24. Explain the property of binary tree
- 25. Every Hamiltonian graph is 2-connected

**26**. If G is Hamiltonian then for every non empty proper subset S of V(G),  $\omega(G - S) \le |S|$  where  $\omega(H)$  denotes the number of components in any graph H

- 27. Every tree has a centre consisting of either one point or two points are adjacent
- 28. Every connected graph has a spanning tree
- 29. A graph is Hamiltonian iff its closure is Hamiltonian
- 30. Explain path given an examples

# TEN MARK QUESTIONS

**31**. In a complete graph with n vertices there are  $\frac{n-1}{2}$  edges disjoint Hamiltonian circuits if n is odd number  $n \ge 3$ 

- **32**. State and prove Dirac's theorem
- 33. A tree with n vertices and has n-1 edges
- **34**. The number of labeled tree with n vertices  $(n \ge 2)$  is  $n^{n-2}$
- **35**. Show that the Peterson graph is non Hamiltonian
- **36**. Let G be a (p, q) graph then the following statements are equivalent
  - 1. G is a tree.
  - 2. Every two points of G are joined by a unique path.
  - 3. G is connected and p=q+1.
  - 4. G is cyclic and p=q+1.
- 37. Explain the characterisation of trees
- 38. Any connected graph with n vertices n-1 edges is a tree .
- **39**. A graph G with n vertices n-1 edges and no circuits is connected
- 40. The distance between vertices of a connected graph of a metric

#### UNIT - IV

# CHOOSE THE CORRECT ANSWER

- **1.** The  $\pi G$  is the union of disjoint regions such regions are called \_\_\_\_\_
  - A) Faces
  - B) plane graph
  - C) planar
  - D) none
- **2.** The  $k_5$  is
  - A) Planar
  - B) non- planar
  - C) faces
  - D) none

**3.** Every planar graph embedded in a plane such that all edges are \_\_\_\_\_ segments.

- A) Circle
- B) polyhedral
- C) straight line
- D) curve

4. A graph is polyhedral iff its planar and \_\_\_\_\_

- A) 2-connected
- B) 3- connected
- C) 1-connected
- D) 0-connected

**5.** If G is a connected plane graph having V,E and F as the sets of vertices , edges, faces respectively, then \_\_\_\_?

WEALT

A) |V| - |E| + |F| = 2

- B) |V| |E| + |F| = 8C) |V| - |E| + |F| = 4D) |V| - |E| + |F| = 9
- 6. If G is a plane (p,q) graph with r faces and k components then\_\_\_\_?
  - A) p-q+r=k+1
  - B) p-q-r=k=2
  - C) p+q+r=k+1
  - D) none of these
- **7.** The *K*<sub>3,3</sub> is
  - A) Planar
  - B) none of these
  - C) non planar
  - D) face
- 8. Every planar graph has
  - A) genus 4
  - B) genus 2
  - C) genus 6
  - D) genus 0

**9.** If G is a maximal planar (p, q) graph without triangles and  $p \ge 3$  then -----?

A) None of these B)  $q \le 2p - 4$ C) q > 2p - 4D) q = 2p - 4

**10.** Every planar graph G with  $p \ge 3$  vertices has at least three points of degree less than\_\_\_\_?

- A) 8 B) 0
- C) 6
- D) A & C

#### ANSWERS:

1. A 2. B 3. C 4. B 5. A 6. A 7. C 8. D 9. B 10. C

# TWO MARK QUESTIONS

- 11. Define embedded.
- **12.** Define planar.
- 13. Define faces.
- 14. Define exterior face.
- 15. Define maximal planar.
- **16.** Define interior face.
- 17. Define triangulated graph.
- **18.** Define homeomorphism.
- 19. Define subdivided.
- 20. Define plane graph.

#### **FIVE MARK QUESTIONS**

- **21.**K<sub>5</sub> Is non planar?
- 22. If G is a plane (p,q) graph with r faces k components then p-q+r=k+1
- **23.** If G is a (p, q) plane graph in which every face is an n cycle then  $q = \frac{n(p-2)}{n-2}$
- **24.** If G is a plane connected (p, q) graph without triangles and  $p \ge 3$  then  $q \le 2p 4$
- **25.** The graph  $K_5$  and  $K_3$  is not planar

**26.** Every planar graph G with  $p \ge 3$  vertices has at least three points of degree less than 6.

**27.** If  $a(p_1, q_1)$  graph and  $a(p_2, q_2)$  graph are homeomorphism then  $p_1 + q_2 = p_2 + q_1$ 

28. Explain outer planar and maximal planar

- 29. Explain thickness and crossing number and genus
- 30. Explain elementary contradiction and geometric dual

# TEN MARK QUESTIONS

**31.** Prove that if G is a connected plane graph having V, E and F as the sets of vertices, edges and faces respectively then |V| - |E| + |F| = 2

**32.** Prove that a graph can be embedded in the surface of a sphere iff it can be embedded in a plane.

**33.** Every polyhedron has at least two faces with the same number of edges on the boundary.

**34.** Every 2-connected plane graph can be embedded in the plane so that any specified face is the exterior face.

**35.** In any connected plane (p,q) graph ( $p \ge 3$ ) with r faces  $q \ge \frac{3r}{2}$  and  $q \le 3p - 6$ 

**36.** Every planar graph G with at least 3 points is a sub graph of a triangulated graph with the same number of vertices.

**37.** A graph is planar iff it has no sub graph homeomorphic to  $K_5(or)K_{3,3}$ .

**38.** A graph is planar iff it doesn't have a sub graph contradictable to  $K_5(or)K_{3,3}$ .

**39.** Show that there are no map five regions in the plane such that every pair of regions is adjacent.

40. Explain planar, embedded, faces.

#### UNIT – V

# **CHOOSE THE CORRECT ANSWERS**

- 1. A weight digraph D is Eulerian iff every point of D has equal
  - A) In degree & out degree
  - B) out degree
  - C) in degree
  - D) all the above
- 2. A digraphs is called Eulerian if it has an\_\_\_
  - A) trail
  - B) faces
  - C) Eulerian trail
  - D) A & C
- **3.** The in degree  $d^{-}(v)$  of a vertex v in a graph D is the number of arc having v as it's?

NEALT

- A) Terminal
- B) initial
- C) isomorphism
- D) digraph
- 4. If two graphs are isomorphic then corresponding points have the \_\_\_\_\_ pair
  - A) Out degree
  - B) in degree
  - C) same degree
  - D) none
- **5.** The out degree  $d^+(v)$  of v is the number of arcs having v as it's?
  - A) C & D
  - B) arcs

- C) tail
- D) initial
- 6. A digraphs are called functional if every point has out degree
  - A) 4
  - B) 1
  - C) 0
  - D) 6
- 7. A complete digraph has n vertices then it has \_\_\_\_?
  - A) n-1arcs
  - B) n(n-1) arcs
  - C) n arcs
  - D) none of these
- 8. A walk in which the origin and terminus coincide is called
  - A) Open walk
  - B) path
  - C) closed walk
  - D) none
- 9. A walk in which all the vertices are distinct then it's called
  - A) Directed path
  - B) path
  - C) A & B
  - D) component
- 10. A nontrail closed walks whose origin and internal vertices are distinct then it's called

WEALT

- A) None of these
- B) directed cycle

```
C) B & D
```

D) circuit

#### **ANSWERS**:

1. D 2. C 3. A 4. C 5. A 6. B 7. B 8. C 9. C 10. C

# TWO MARK QUESTIONS

- **11**. Define isomorphism.
- 12. Define weight of a graph.
- 13. Define sub diagraph.
- 14. Define underlying graph.
- 15. Define in degree.
- 16. Define out degree.
- 17. Define directed graph.
- **18.** Define functional.
- **19.** Define complete.
- **20.** Define converse digraph.

## **FIVE MARK QUESTIONS**

21.If two digraphs are isomorphic then corresponding points have the same degree pair.

**22.** In a digraphs D sum of the in degrees of all the vertices is equal to the sum of their out degrees each sum being equal to the number of arcs in D.

- 23. Explain connector problem?
- 24. Explain the algorithm of Kruskal's?
- 25. Explain the algorithm of Dijikstra's?
- 26. Explain the directed graph, in degree and out degree?
- **27.** Explain the digraph?

- **28.** Explain the basic properties of directed graphs.
- **29.** Explain the isomorphism.
- **30.** Explain converse digraph, complete, functional.

#### **TEN MARK QUESTIONS**

- **31.** Explain the digraphs and it's not isomorphic with given an examples.
- **32.** Explain the Kruskal's algorithm with given an example.
- **33.** Explain shortest path problem.
- 34. Explain shortest distance and given an any examples?

**35.** If two digraphs are isomorphic then corresponding points have the same degree pair.

- **36.** Explain digraph and its properties.
- **37.** Explain the tail, head and its degree pair.
- **38.** Explain isomorphism.
- **39.** Explain the converse digraph, functional, complete
- **40.** Find a minimum weight spanning tree when the distances between the points are 6.

