

ஸ்ரீ-ல-ஸ்ரீ காசிவாசி சுவாமிநாத சுவாமிகள் கலைக் கல்லூரி தருப்பனந்தாள் – 612504

S.K.S.S ARTS COLLEGE, THIRUPPANANDAL - 612504

QUESTION BANK

Title of the Paper

LINEAR ALGEBRA

COURSE – II B.Sc., Maths

Prepared by

S.BAKIYALAKSHMI M.Sc.,M.Phil., B.Ed., Assistant Professor Department of Mathematics

CORE COURSE VIII

LINEAR ALGEBRA

Objectives

1. To facilitate a better understanding of vector space

2. To solve problems in linear algebra

UNIT – I Vector spaces:

Vector spaces – definition and examples – subspaces – linear transformation – span of a set.

UNIT – II Basis and dimension:

Linear independence – Basis and dimension – Rank and nullity.

UNIT – III Matrix and Inner product space

Matrix of a linear transformation – Inner product space – Definition and examples – Orthogonality – Gram Schmidt Orthogonalisation process – Orthogonal Complement.

UNIT – IV Theory of Matrices:

Algebra of Matrices – Types of Matrices – The Inverse of a Matrix – Elementary Transformations – Rank of a Matrix.

UNIT – V Characteristic equation and bilinear forms:

Characteristic equation and Cayley –Hamilton theorem – Eigen values and Eigen vectors.

Text book

1. Arumugam s and thangapandi Isaac A, Modern Algebra, sciTech publications (India) Ltd., Chennai, Edition 2012.

References

1. I. N. Herstein, Topics in Algebra, second Edition, John Wiley & sons (Asia), 1975.

LINEAR ALGEBRA

UNIT- I

CHOOSE THE CORRECT ANSWER

- **1.** Hom (v,v) is a
 - a) Vector space
 - b) Subspace
 - c) Integer
 - d) None
- 2. Any two finite dimensional vector spaces over F of the same dimension are

WEALTH

- a) Isomorphic
- b) Non-isomorphic
- c) Homomorphism
- d) None
- 3. A & B are subspaces of V then $\frac{A+B}{B}$ is isomorphic to
 - a) A∩B/A
 - b) A/A∩B
 - c) B/A∩B
 - d) None
- 4. The kernel of a homomorphism is a
 - a) Space
 - b) Homomorphism
 - c) Subspaces
 - d) None
- 5. Hom (v,w) is a
 - a) Ring

- b) Subspace
- c) Vector space
- d) None
- 6. L(s) is a of V
 - a) Subspace
 - b) Not a subspace
 - c) Dual space
 - d) None
- 7. Let V be a vector space, T is a linear transform on V into V \ni T α =0 $\forall \alpha \in V$
 - a) T is identity transform
 - b) T is zero transform
 - c) T is invertible
 - d) T is orthogonal
- 8. The vector space which has only the additive identity element zero is
 - a) Complex space
 - b) Real space
 - c) Null space
 - d) None
- 9. If V and W are finite dimensional vector space over the same field. Then V and W are isomorphic iff S WEALTH
 - a) dim $V > \dim W$
 - b) dim $V = \dim W$
 - c) dim V< dim W
 - d) None

10. If $V = R^3$ is a vector space and $W = \{(x, y, 1); x, y \in R\}$ is a subset V then

- a) W is a subspace of V
- b) W is not a subspace of V
- c) W is not a vector space
- d) None of these

ANSWERS:

1) a 2) a 3) b 4) c 5) c 6) a 7) b 8) c 9) b 10) a

TWO MARK QUESTIONS

- 11. Define vector space.
- 12. Define subspace.
- 13. What is linear transformation?
- 14. What is trivial linear transformation?
- 15. Define direct sum.
- 16. What is linear combination?
- 17. Define linear span.
- 18. Define homomorphism.
- 19. Define quotient space.
- 20. Define kernel of homomorphism.

FIVE MARK QUESTIONS

- 21. Prove that R×R is a vector space over R under addition and scalar multiplication defined by $(x_1, x_2) + (y_1, y_2) = (x_1+y_1, x_2+y_2)$ and $\alpha (x_1, x_2) = (\alpha x_1, \alpha x_2)$.
- 22. Prove that C is a vector space over the field R.
- 23. Prove that the union of two subspaces of a vector space need not be a subspace.

- 24. $R^n = \{(x_1, x_2, ..., x_n) | x_i \in \mathbb{R}, 1 \le i \le n\}$, then prove that R^n is a vector space over \mathbb{R} under addition and scalar multiplication defined by $(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ $\alpha (x_1, x_2, ..., x_n) = (\alpha x_1, \alpha x_2, ..., \alpha x_n).$
- 25. Let V= {a+b√2/a,b∈Q}. Then V is a vector space over Q under addition and multiplication.
- 26. Let V denote the set of all solution of the differential equation $2\frac{d^2y}{dx^2} 7\frac{dy}{dx} + 3y=0$. Then prove that V is a vector space over R.
- 27. In \mathbb{R}^3 , $\mathbb{W} = \{(ka, kb, kc) / k \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
- 28. Let V be a vector space over a field F. A non empty subset W of V is a subspace of V iff $u, v \in W$ and $\alpha, \beta \in F \Rightarrow \alpha u + \beta v \in W$.
- 29. T: $R^2 \rightarrow R^2$ defined by T(a,b) = (2a-3b, a+4b) is a linear transformation.
- 30. Let T: V→W be a linear transformation, then prove that $T(V)={T(v) / v \in V}$ is a subspace of W.

TEN MARK QUESTIONS

- 31. Let V vector space over a field F. Then
 - (i) α0 = 0 ∀ α ∈F
 - (ii) $0v = 0 \forall v \in V$
 - (iii) $(-\alpha)v = \alpha(-v) = -(\alpha v) \forall \alpha \in F \& v \in V$
 - (iv) $\alpha v = 0 \Rightarrow \alpha = 0$ (or) v = 0.
- 32. Let V be a vector space over F. A non empty subset W of V is a subspace of V iff W is closed with respect to vector addition and scalar multiplication in V.
- 33. Prove that the intersection of two subspaces of a vector space is a subspace.
- 34. If A&B are subspaces of V, prove that A+B= {v∈V / v=a+b, a∈A, b∈B} is a subspace of V. Further show that A+B is the smallest subspace containing A&B.
- 35. Let A&B be subspace of a vector space V. Then A∩B={0} iff every vector v∈ A+B can be uniquely expressed in the form v= a+b where a∈A & b∈B.

- 36. State and prove fundamental theorem of homomorphism.
- 37. Let V be a vector space over a field F. Let A&B be subspace of V. Then prove that $\frac{A+B}{A} \cong \frac{B}{A \cap B}$.
- 38. Let V&W be a vector space over a field F. Let L(V,W) represent the set of all linear transform from V to W. Then L(V,W) itself is a vector space over F under addition and scalar multiplication defined by (f+g)(v) = f(v)+g(v) and $(\alpha f)(v) = \alpha f(v)$.
- 39. Let V be a vector space over F and W a subspace of V. Let V/W = {W + v/ v∈V}. Then V/W is a vector space over F under the following operations.

(i)
$$(W+v_1) + (W+v_2) = W+v_1+v_2$$

- (ii) $\alpha(W+v_1) = W+\alpha v_1$
- 40.Let V be a vector space over a field F and S be a non- empty subset of V. Then prove that (i) L(S) is a subspace of V (ii) S ⊆ L(S) (iii) If W is any subspace of V such that S⊆ W, then L(S) ⊆ W. i.e L(S) is the smallest subspace of V containing S.

UNIT – II

CHOOSE THE CORRECT ANSWER

- 1. Let S be a subset of a vector space V a field F. S is called a basis of V if
 - a) S is linearly independent and L(S)=S
 - b) S is linearly independent and L(S)=V
 - c) S is linearly dependent and L(S)=V
 - d) S is linearly dependent and L(S)=S
- 2. A basis for the vector space consisting of all matrices of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ Where a, b,

S WEALTH

 $d \in R$ is

a)
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

b) $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$
c) $\left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$
d) $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$

3. dim M₂(R)=

- a) 1
- b) 2
- c) 3
- d) 4

4. In V₃(R), let S= L {(1, 1, 1)} and T = L {(-1, -1, -1)}. Then dim (S \cap T) is

- a) 1
- b) 0
- c) 2
- d) 3
- 5. In V₃(R), let S= L {(1, 1, 1)} and T = L {(-1, -1, -1)}. Then dim (S+T) is

PPANANDAL

WEALTH

- a) 1 b) 0
- c) 2
- -, -
- d) 3
- 6. 1& i are linearly independent over the
 - a) Real
 - b) Complex
 - c) Integers
 - d) None
- 7. 1& i are linearly dependent over the
 - a) Real
 - b) Complex
 - c) Integers

d) None

- 8. dim (A+B)=
 - a) dim(A)+dim(B)-dim(A \cap B)
 - b) dim(A)-dim(B)
 - c) dim(A)+dim(B)+dim(A $\cap B$)
 - d) dim(A)+dim(B)
- 9. Any two finite dimensional vector space over F of the same direction are
 - a) Isomorphic
 - b) Non- isomorphic
 - c) Homomorphism
 - d) None of these
- 10. Hom $(v,v) = n^2$ then n is
 - a) Dimension of v
 - b) Number of v
 - c) Data inadequate
 - d) None of these

ANSWERS:

1)b 2)a 3)d 4)a 5)a 6)a 7)b 8)a 9)a 10)a

TWO MARK QUESTIONS

EALT

- 11. Define finite dimensional vector space.
- 12. Define linearly independent.
- 13. Define linearly dependent.
- 14. Define basis of a vector space.

- 15. Define standard basis.
- 16. Define maximal linearly independent set.
- 17. Define minimal generating set.
- 18. What is rank?
- 19. What is nullity?
- 20. Define singular and non-singular.

FIVE MARK QUESTIONS

- 21. Prove that any set containing a linearly dependent set is also linearly dependent.
- 22. Prove that any finite dimensional vector space V contains a finite of number linearly independent vectors which span V.
- 23. Prove that any two basis of a finite dimensional vector space V have the same number of elements.
- 24. In V_n (F), {e₁,e₂, ...,e_n} is linearly independent set of vectors for $\alpha_1e_1+\alpha_2e_2+\ldots+\alpha_ne_n=0$.
- 25. Let T: V \rightarrow W be a linear transformation. Then prove that dim V = rank T + nullity T.
- 26. Let V be a finite dimensional vector space over a field F. Let A be a subspace of V. Then there exists a subspace B of V such that $V = A \oplus B$.
- 27. Let V be a vector space of dimension n. Then
 - (i) Any set of m vectors where m>n is linearly dependent.
 - (ii) Any set of m vectors where m<n cannot span V.
- 28. Prove that S= {(1,0,0), (0,1,0), (1,1,1)} is a basis for $V_3(R)$.
- 29. In $V_3(R)$, the vectors (1,2,1),(2,1,0),&(1,-1,2) are linearly independent.
- 30. Let S= {v₁, v_{2...} v_n} be a linearly independent set of vector in a vector space V over a field F. Then every element of L(S) can be uniquely written in the form $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$ where $\alpha_i \in F$.

TEN MARK QUESTIONS

- 31. In $V_3(R)$ the vectors (1,4,-2), (-2,1,3), (-4,11,5) are linearly dependent.
- 32. Any subset of a linearly independent set is linearly independent.
- 33. S={ v_1, v_2, \dots, v_n } is a linearly dependent set of vectors in V iff there exists a vector $v_k \in S$ such that v_k is a linear combination of the preceding vectors v_1, v_2, \dots, v_{k-1} .
- 34. Let V be a vector space over a field F. Then $S = \{v_1, v_2, \dots, v_n\}$ is a basis for V iff every element of V can be uniquely expressed as a linear combination of element of S.
- 35. Let V be a vector space over a field F. Let $S=\{v_1, v_2, \dots, v_n\}$ span V. Let $S=\{w_1, w_2, \dots, w_n\}$ be a linearly independent set of vectors in V. Then $m \le n$.
- 36. Let V be a finite dimensional vector space over a field F. Any linearly independent set of vectors in V is part of a basis.
- 37. Prove that any vector space of dimension n over a field F is isomorphic to $V_n(F)$.
- 38. Let V be a vector space over a field F. Let $S = \{v_1, v_2, ..., v_n\} \subseteq V$. Then the following are equivalent.
 - (i) S is a basis for V.
 - (ii) S is a maximal linearly independent set.
 - (iii) S is a minimal generating set.
- 39. Let V be a finite dimensional vector space over a field F. Let w be a subspace of V.
 Then prove that (i) dim w/v = dim v
 (ii) dim v/w = dim v dim w
- 40. Let V be a finite dimensional vector space over a field F. Let A&B be subspace of V. Then dim $(A+B) = \dim (A) + \dim (B) - \dim (A \cap B)$.

UNIT – III

EALTH

CHOOSE THE CORRECT ANSWER

- 1. The standard inner product defined on $V_3(R)$ where $x=(x_1,x_2,x_3)$ & (y_1,y_2,y_3) is
 - a) $\langle x, y \rangle = x_1 y^2 + x_2 y^2 + x_3 y^2$
 - b) $\langle x, y \rangle = x_1y_1 + x_2y_2 + x_3y_3$

- c) $<x,y> = x_1y + x_2y + x_3y$
- d) $\langle x, y \rangle = xy_1 + xy_2 + xy_3$
- 2. Let V be a vector space of polynomials with inner product defined by
 - $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. If f(t) = t & g(t) = t+1 then $\langle f,g \rangle$ is
 - a) 1/6
 - b) 0
 - c) 5/6
 - d) -5/6
- 3. The orthogonal complement of inner product space V is
 - a) zero subspace {0}
 - b) V itself
 - c) Any subspace
 - d) None of these
- 4. If $\{0\}$ is a zero subspace of inner product space V then $\{0\}^{\perp}$ is equal to

WEALTH

- a) {0}
- b) V
- c) φ
- d) None of these
- 5. The zero subspace of inner product space consists
 - a) Zero elements only
 - b) Non-zero elements
 - c) Identity
 - d) None of these
- 6. If V is an inner product space then for $\alpha, \beta \in V$ is

- a) $\left| \left(\frac{\alpha}{\beta} \right) \right| = \|\alpha\| \|\beta\|$
- b) $\left| \left(\frac{\alpha}{\beta} \right) \right| \ge \|\alpha\| \|\beta\|$
- c) $\left| \left(\frac{\alpha}{\beta} \right) \right| \le \|\alpha\| \|\beta\|$
- d) None of these
- 7. If V is an inner product space then for $\alpha \in V$ is
 - a) $\|\alpha\| \le 0$, $\alpha \ne 0$
 - b) $\|\alpha\| \ge 0$, $\alpha \ne 0$
 - c) $\|\alpha\| = 0$, $\alpha \neq 0$
 - d) $\|\alpha\| > 0$, $\alpha \neq 0$
- 8. If V is an inner product space $\alpha, \beta \in V$ is and c any scalar then
 - a) $||c\alpha|| = ||c|| ||\alpha||$
 - b) $||c\alpha|| \ge ||c|| ||\alpha||$
 - c) $\|c\alpha\| \leq \|c\|\|\alpha\|$
 - d) None of these
- 9. An orthogonal set of non-zero vectors
 - a) Linearly independent
 - b) Linearly dependent
 - c) constant
 - d) None of these
- 10. If T is a linear operator on a finite dimensional and space V and scalar C is a characteristics value of T then

CATION

NEALT

- a) $det(T CI) \neq 0$
- b) det(T CI) = 0

c) det(C - TI) > 0

d) det(T - CI) < 0

ANSWERS

1)b 2)c 3)a 4)b 5)a 6)c 7)d 8)a 9)a 10)b

TWO MARK QUESTIONS

- 11. Define inner product space.
- 12. Define Euclidean space.
- 13. Define orthogonal.
- 14. Define orthogonal set.
- 15. What is orthonormal set?
- 16. State Gram Schmidt orthogonalisation process.
- 17. Define orthogonal complement.
- 18. Define norm of inner product.
- 19. State Schwartz inequality.
- 20. State triangle inequality.

FIVE MARK QUESTIONS

- 21. Obtain the matrix representing the linear transformation T: $V_3(R) \rightarrow V_3(R)$ given by T(a,b,c) = (3a, a-b, 2a+b+c) with respect to the standard basis { e_1,e_2,e_3 }.
- 22. Find the linear transformation T: $V_3(R) \rightarrow V_3(R)$ determined by the matrix $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$ with respect to the standard basis {e₁,e₂,e₃}.
- 23. Prove that $V_n(R)$ is a real inner product space with inner product defined by $\langle x, y \rangle = x_1y_1 + x_2y_2 + \dots + x_ny_n$ where $x = (x_1, x_2, \dots, x_n) \& y = (y_1, y_2, \dots, y_n)$.
- 24. Prove that $V_n(C)$ is a complex inner product space with inner product defined by $\langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + \dots + x_n \overline{y_n}$ where $x = (x_1, x_2, \dots, x_n) \& y = (y_1, y_2, \dots, y_n)$.

- 25. Let V be the set of all continuous real valued functions defined on the closed interval [0, 1]. Prove that V is a real inner product space with inner product defined by $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.
- 26. State and prove Schwartz's inequality.
- 27. State and prove Triangle inequality.
- 28. Let $S=\{v_1, v_2, \dots, v_n\}$ be an orthogonal set of non-zero vectors in an inner product space V. Then prove that S is linearly independent.
- 29. Let S={ v_1, v_2, \dots, v_n } be an orthogonal set of non-zero vectors in V. Let $v \in V$ and $V = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$. Then prove that $\alpha_k = \frac{\langle v, v_k \rangle}{\|v_k\|^2}$
- 30. Find a vector of unit length which is orthogonal to (1,3,4) in V₃(R) with standard inner product.

TEN MARK QUESTIONS

- 31. Let V be the vector space of polynomials with inner product given by $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Let f(t)=t+2 and $g(t)=t^2-2t-3$. Find (i) $\langle f,g \rangle$ (ii) ||f||
- 32. The norm defined in an inner product space V has the following properties

(i)
$$||x|| \ge 0$$
 and $||x|| = 0$ iff x=0

- (ii) $\|\alpha x\| = |\alpha| \|x\|$
- (iii) $|\langle x, y \rangle| \le ||x|| ||y||$
- (iv) $||x + y|| \le ||x|| + ||y||$
- 33. Every finite dimensional inner product space has an orthonormal basis.
- 34. Apply Gram-Schmidt process to construct an orthonormal basis for V₃(R) with the standard inner product for the basis { v_1, v_2, v_3 } where $v_1=(1,0,1)$, $v_2=(1,3,1)$ and $v_3=(3,2,1)$.
- 35. Find an orthogonal to (1,3,4) are the points lying on the plane x+3y+4z=0 which is a two dimensional subspace of V₃(R).
- 36. Let V be the set of all polynomials of degree ≤ 2 together with zero polynomial. V is a real inner product space with inner product defined by $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$ Stating with the basis {1,x,x²}. Obtain an orthonormal basis for V.

- 37. Let V be a finite dimensional inner product space. Let W be a subspace of V. Then prove that V is the direct sum of W and W^{\perp} . i.e., V= W $\oplus W^{\perp}$.
- 38. (i) If S is any subset of V then prove that S^{\perp} is a subspace of V.
 - (ii) Let V be a finite dimensional inner product space. Let W be a subspace of V.
- | Then prove that $(W^{\perp})^{\perp} = W$.
- 39. Let $W_1 \& W_2$ be subspace of a finite dimensional inner product space. Then Prove that (i) $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and (ii) $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$
- 40. Let V & W be two finite dimensional vector space over a field F. Let dim V=m & dim W = n. Then L (V,W) is a vector space of dimension mn over F.

UNIT – IV

CHOOSE THE CORRECT ANSWER

S WEALTH

- 1. If A = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ then A^T is
 - a) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
 - (1, 1)
 - b) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
 - c) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
 - d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2. If A is any 3×2 matrix then $(A^T)^T$ is
 - a) 3×3 matrix
 - b) 3×2 matrix
 - c) 2×2 matrix
 - d) 2×3 matrix
- 3. A & B are m×n matrices. Then the order of A^T+B^T is
 - a) m×n
 - b) m×m

c) n×n

d) n×m

4. If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ then the conjugate of A is a) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 9 \\ 4 & 3 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ 5. Conjugate of $A = \begin{pmatrix} 1+i & 2 \\ 2-i & i \end{pmatrix}$ is a) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ b) $\begin{pmatrix} 1-i & 2 \\ 2+i & -i \end{pmatrix}$ c) $\begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$

6. If the elements of a 2×2 matrix are given by the formula $a_{ij}=i+j+ij$, then the first element in the first row is

7. A square matrix A is said to be idempotent if

a) A²=0

- b) A²=A
- c) A²=I
- d) A=A⁻¹
- 8. A square matrix A is said to be involutory if
 - a) A²=0
 - b) A²=A
 - c) A²=I
 - d) A=A⁻¹
- 9. If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ then adj A is
 - a) $\begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix}$
 - b) $\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 3 & 6 \\ 4 & 5 \end{pmatrix}$
 - d) $\begin{pmatrix} 1 & 1 \\ i & 1 \end{pmatrix}$

TWO MARK QUESTIONS

11. Define singular and non-singular.

- 12. Define symmetric matrix.
- 13. Define skew-symmetric matrix.
- 14. Define orthogonal matrix.
- 15. Define hermitian matrix.
- 16. Define involutory.
- 17. If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ then find A^{-1} .
- 18. If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then find A^{-1} .
- 19. If A= $\begin{pmatrix} 1+i & 1-i \\ i & -1 \end{pmatrix}$ then find A+ A⁻¹.
- 20. Define unitary matrix.

FIVE MARK QUESTIONS

NEALTH

21. Find the value of $(2 \ 1 \ -1) \begin{pmatrix} 4 \ -1 \ 2 \\ 0 \ -1 \ 1 \\ 1 \ 0 \ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}$

22. Find the value of x satisfying the equation $(x \ 1) \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ 2 \end{pmatrix} = 0$

- 23. If A= $\begin{pmatrix} 1 & 0 & 0 \\ 2 & x & 4 \\ 4 & 1 & x \end{pmatrix}$ is a singular matrix then find the value of x.
- 24. If A= $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ then find A⁻¹.
- 25. If A= $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ then find the cofactor matrix (A_{ij}).
- 26. Prove that a square matrix A is symmetric iff $A=A^{T}$.
- 27. Let A&B be orthogonal matrices of the same order. Then find
 (i) A^T is orthogonal
 - (ii) AB is orthogonal.

- 28. Prove that a square matrix A of order n is non-singular iff A is invertible.
- 29. Let A be an m× n matrix, B be an n× p matrix and c be a p×q matrix. Then find A(BC)=(AB)C.
- 30. Let A be an m× n matrix, B be an n× p matrix. Then find $(AB)^{T}=B^{T}A^{T}$.

TEN MARK QUESTIONS

- 31. Let A and B be symmetric matrices of order n. Then find
 - (i) A+B is symmetric
 - (ii) AB is symmetric iff AB=BA
 - (iii) AB+BA is symmetric
 - (iv) If A is symmetric then kA is symmetric where $k \in F$.
- 32. Let A and B be skew- symmetric matrices of order n. Then find
 - (i) A+B is skew-symmetric
 - (ii) kA is skew-symmetric, k∈F
 - (iii) A²ⁿ is a symmetric and A²ⁿ⁺¹ is skew- symmetric matrix where n is any positive integer.

1

- 33. Let A&B be square matrices of the same order. Then find
 - (i) A,B are hermitian => A+B is hermitian
 - (ii) A is hermitian => i A is skew hermitian
 - (iii) A,B are hermitian => AB+BA is hermitian.
- 34. Compute the inverse of the matrix A= $\begin{pmatrix} -15 \\ -15 \end{pmatrix}$
- 35. If $\omega = e^{2\pi i/3}$ find the inverse of the matrix A = $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ω^2 ω

36. Reduce the matrix A= $\begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 2 \\ 2 & 4 & -2 \end{pmatrix}$ to the canonical form.

37. Find the inverse of the matrix A = $\begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & -1 \\ -2 & 1 & 2 \end{pmatrix}$

38. Find the rank of the matrix A= $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 4 & 2 \end{pmatrix}$ by examining the determinant minors.

39. Find the rank of the matrix A= $\begin{pmatrix} 3 & -1 & 2 \\ 0 & 1 & -3 \\ 6 & -1 & 1 \end{pmatrix}$

40. Prove that the row rank and the column rank of any matrix are equal.

UNIT-V

CHOOSE THE CORRECT ANSWER

- 1. The characteristic polynomial of A = $\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ is
 - a) $x^{2}-2x+5$
 - b) x²+2x+5
 - c) x²-2x-5
 - d) $x^{2}+2x-5$
- 2. The characteristic polynomial of A = $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is
 - a) x^2
 - b) x²-1
 - c) 1-x²
 - d) x-1

3. The characteristic equation of $\begin{pmatrix} -m & -n \\ 1 & 0 \end{pmatrix}$ is

- a) x^{2} -mx-n = 0
- b) $x^2 + mx + n = 0$ c) $x^2 + nx + m = 0$
- c) $x^{2}+nx+m = 0$

d)
$$x^{2}+nx+mn = 0$$

4. The characteristic equation of A = $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is

- a) $x^2 2x + 1 = 0$
- b) $x^2 + 2x + 1 = 0$
- c) $x^2 + x + 2 = 0$
- d) $x^2 x 1 = 0$

5. The Eigen values of the matrix I_2 are

- a) -1, 1
- b) -1, -1
- c) 1, -1
- d) 1, 1

6. If the Eigen values of a square matrix A are 1, 2, 3 then the eigen values of A² are

a) 1, 4, 9 b) 1, 2, 3 c) -1, -4, -9 d) 1, 3, 5

7. The characteristic roots of $\begin{pmatrix} cos\theta & -sin\theta \\ -sin\theta & cos\theta \end{pmatrix}$ are

- a) -1, -1
- b) 1, 1
- c) $\cos^2\theta \sin^2\theta$
- d) $\cos\theta + \sin\theta$

8. If the Eigen values of A = $\begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ are -2, 3, 6 then the Eigen values of A^T are

DAL

a) -2, 3, 6 b) $-\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$ c) -2², 3², 6²

- d) -4, 6, 12
- 9. The sum of the Eigen values of $\begin{pmatrix} cos\theta & -sin\theta \\ -sin\theta & -cos\theta \end{pmatrix}$ is
 - a) 0
 - b) 1
 - c) $2\cos\theta$
 - d) $\cos^2 \theta$

10. The sum and product of the Eigen values of $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ are

- a) 0, 0
- b) 3, 3
- c) 3, 1
- d) 2, 1

ANSWERS

1)a 2)a 3)b 4)a 5)d 6)a 7)c 8)a 9)a 10)c.

TWO MARK QUESTIONS

WEALTH

- 11. Define Characteristic matrix.
- 12. Define Characteristic polynomial.
- 13. Define characteristic equation.
- 14. State Cayley Hamilton theorem.
- 15. Define Eigen value.
- 16. Define Eigen vector.
- 17. Define Characteristic roots.

18. If A =
$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$
 then find the sum and product of the Eigen values of A.

19. Find the Eigen value of $\begin{pmatrix} 8 & -6 & 6 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$.

20. Find the Eigen value of A = $\begin{pmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{pmatrix}$.

FIVE MARK QUESTIONS

21. Find the characteristic equation of A = $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

22. Find the characteristic equation of A = $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$,

23. Find the characteristic equation of the matrix A = $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$

24. Show that the matrix $A = \begin{pmatrix} 2 & -3 & 1 \\ 3 & 1 & 3 \\ -5 & 2 & -4 \end{pmatrix}$ satisfies A(A-I)(A+2I) = 0.

25. Verify Caley Hamilton's theorem for the matrix A = $\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$.

26. Prove that the Eigen values of A and its transpose A^T are the same.

27. If λ is an Eigen value of a non singular matrix A then $\frac{1}{\lambda}$ is an eigen value of A⁻¹

28. If λ is an Eigen value of A then $k\lambda$ is an Eigen value of KA where K is a scalar.

29. Verify the statement that the sum of the elements in the diagonal of a matrix is the sum of the Eigen values of the matrix $A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$.

30. Find the sum of the squares of the Eigen values of A = $\begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}$.

TEN MARK QUESTIONS

31. State and prove Cayley Hamilton theorem.

32. Using cayley Hamilton theorem, find the inverse of the matrix $\begin{pmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{pmatrix}$.

- 33. Using cayley Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{pmatrix}$, find $A^{-1} \& A^{4}$.
- 34. Let A be a square matrix. Then find
 - (i) The sum of the Eigen values of A is equal to the sum of the diagonal elements of A.
 - (ii) Product of Eigen values of A is |A|.
- 35. Prove that Eigen vectors corresponding to distinct Eigen values of a matrix are linearly independent.
- 36. Prove that the characteristic roots of a Hermitian matrix are all real.

37. The product of two Eigen values of the matrix A= $\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ is 16. Find the 3rd Eigen value. What is the sum of the Eigen values of A? 38. Find the Eigen values and Eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 2 & 1 & 1 \end{pmatrix}$.

EDUCATION IS WEALTH

- 39. Find the Eigen values and Eigen vectors of the matrix A= $\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$.
- 40. Find the Eigen values and Eigen vectors of the matrix $A = \begin{pmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$.