

ஸ்ரீ-ல-ஸ்ரீ காசிவாசி சுவாமிநாத சுவாமிகள் கலைக் கல்லூரி தருப்பனந்தாள் – 612504

S.K.S.S ARTS COLLEGE, THIRUPPANANDAL - 612504

QUESTION BANK

Title of the Paper

REAL ANALYSIS

COURSE - III MATHS

Prepared by A.NIRAIMATHI M.Sc., Assistant Professor

Department of Mathematics

CORE COURSE X REAL ANALYSIS

Objectives: To enable the students to

1. Understand the real number system and countable concepts in real number system

2. Provide a Comprehensive idea about the real number system.

3. Understand the concepts of Continuity, Differentiation and Riemann Integrals

4. Learn Rolle's Theorem and apply the Rolle's theorem concepts.

UNIT I :

Real Number system – Field axioms –Order relation in R. Absolute value of a real number & its properties –Supremum & Infimum of a set – Order completeness property – Countable & uncountable sets.

UNIT II :

Continuous functions –Limit of a Function – Algebra of Limits – Continuity of a function –Types of discontinuities – Elementary properties of continuous functions – Uniform continuity of a function.

UNIT III :

Differentiability of a function –Derivability & Continuity –Algebra of derivatives – Inverse Function Theorem – Daurboux"s Theorem on derivatives.

Rolle's Theorem –Mean Value Theorems on derivatives- Taylor's Theorem with remainder- Power series expansion .

UNIT V :

Riemann integration –definition – Daurboux's theorem –conditions for integrability – Integrability of continuous & monotonic functions - Integral functions – Properties of Integrable functions - Continuity & derivability of integral functions – The Fundamental Theorem of Calculus and the First Mean Value Theorem. **TEXT BOOK(S)**:

1. M.K, Singhal & Asha Rani Singhal , A First Course in Real Analysis, R.Chand & Co., June 1997 Edition

2. Shanthi Narayan, A Course of Mathematical Analysis, S. Chand & Co., 1995

UNIT – I - Chapter 1 of [1]

UNIT – II - Chapter 5 of [1]

UNIT - III - Chapter 6 - Sec 1 to 5 of [1]

UNIT – IV - Chapter 8 – Sec 1 to 6 of [1]

UNIT - V - Chapter 6 - Sec 6.2, 6.3, 6.5, 6.7, 6.9 of [2]

REFERENCE(S) :

1. Goldberge, Richard R, Methods of Real Analysis, Oxford & IBHP Publishing Co., New Delhi, 1970.

UNIT - I

Choose the correct Answer :

- 1) The set R is close with respect to addition. That is, if a and b any two real numbers, then a + b is a unique real number.
 - a) Closure for addition.
 - b) Associative law of addition.
 - c) Identity element for addition.
 - d) Commutative law of addition.
- 2) The operation of addition in R is associative. That is, for each triple of real numbers a,b,c, a + (b + c) = (a + b) + c.
 - a) Existence of negatives.
 - b) Closure for addition.
 - c) Associative law of addition.
 - d) None of these.
- 3) There exists a real number, namely 1, such that $a \cdot 1 = 1$. a = a for all $a \in R$
 - a) Associative law of multiplication.
 - b) Identity element for multiplication.
 - c) Existence of inverses.
 - d) None of these.
- 4) For each pair of real numbers a and b, ab = ba
 - a) Identity element for multiplication.
 - b) Existence of inverses.
 - c) Associative law of multiplication.
 - d) Commutative law of multiplication.
- 5) The difference between to real numbers x and y is given by x+(-y), and is denoted by x-y. The operation of finding the difference is called
 - a) Addition.
 - b) Multiplication.
 - c) Subtraction.
 - d) Division.
- 6) A real number a is said to be If a>0.
 - a) Positive.

b) Negative.

c) Equal.

d) Infinity.

7) If x be a real number, then its denoted by |x|, is defined by the rule

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0, \end{cases}$$

We may observe that |x| is defined for every $x \in R$. Also, $x_1 = x_2 \Rightarrow |x_1| = |x_2|$.

- a) Less then
- b) Absolute value
- c) Greater then
- d) None of the above
- 8) If for a set S of real numbers, there exists a real number u, such that $x \in S \Rightarrow$
 - $x \leq u$, then u is called an of S.
 - a) Upper bound
 - b) Lower bound
 - c) Both a and b
 - d) None of the above.
- 9) If the set of all upper bound of a set S of real numbers has a smallest member, say w, then w is said to be a of S.
 - a) Bounded
 - b) Infimum
 - c) Supremum
 - d) None of these
- 10) A real number is said to be if it is the root of some polynomial equation with rational coefficients.

S WEALTH

- a) Finite
- b) Infinite
- c) Enumerable
- d) Algebraic

Answers :

1) a 2) c 3) b 4) d 5) c 6) a 7) b 8) a 9) c 10) d

- 11) Define Real number.
- 12) Define Commutative law of multiplication.
- 13) If $x, y, z \in R$ and x + y = y + z then x = y.
- 14) Definition of Quotient.
- 15) For ever $x \in R$ to prove |x| = |-x|.
- 16) Define Upper bound.
- 17) Define Supermum.
- 18) Define Infimum (or) Greatest lower bound.
- 19) Define Finite set.
- 20) Define Algebraic number.

5 Marks :

- 21) For each $x \in R$ To find
 - i) (–x) = x
 - ii) -(x + y) = (-x) + (-y)
- 22) There can exist at the most one identity for addition in R (uniqueness of zero)
- 23) To each x in R there correspond one and only one real number y such that

x + y = y + x = 0. (Uniqueness of negative)

- 24) There can exist at the most one identity element for multiplication in R.
- 25) If x, y be the real number such that xy = 0 then either x = 0 (or) y = 0.
- 26) If *x*, *y*, *z* be the real numbers such that xz = yz and $z \neq 0$ then x = y.
- 27) If a,b be positive real numbers then ab is a positive real number.
- 28) For every $x \in R |x|^2 = x^2 = |-x|^2$

- 29) The set of positive real number R^+ is not bounded above.
- 30) A set cannot have more than one supremum.

- 31) State and prove Triangle inequality.
- 32) For all real number x and y $|x y| \ge ||x| |y||$
- 33) To prove $|x + y|^2 + |x y|^2 = 2(|x|^2 + |y|^2)$.
- 34) To prove $|x y| \le |x| + |y|$
- 35) Any non empty set of real numbers which is bounded below infimum.
- 36) If x and y ne any positive real numbers, then there exists a positive integer n such that ny > x (lower bound)
- 37) There is no rational number whose square is 2.
- 38) The set of rational numbers is not complete ordered field.
- 39) Every subset of a countable set is countable.
- 40) The set [0,1] is uncountable.

UNIT - II

Choose the correct Answer :

- A function f defined on an open interval I is said to be continuous from the..... at x₀ ∈ I if lim _{x→x₀-0} f(x) exists and equal f(x₀).
 - a) Right
 - b) Left
 - c) Center
 - d) Equal
- 2) If $\lim_{x\to c+0} f(x) = l$ or $\lim_{x\to c} f(x) = l$ this is
 - a) Right hand limits

- b) Left hand limits
- c) Limits
- d) None of these
- 3) Let c be any real number and let f be defined on R by setting f(x) = c for all
 - $x \in R$.
 - a) Identity function
 - b) zero value
 - c) Constant
 - d) None of these
- 4) Let f be a function defined on R by setting f(x) = x for all $x \in R$
 - a) Constant function
 - b) nonconstant function
 - c) Identity function
 - d) None of the above
- 5) Let f be defined on R by setting
 - f(x)=1, when x is rational.
 - f(x) = -1, when x is irrational.
 - a) Identity function
 - b) Constant function
 - c) nonconstant function
 - d) Dirichlet's function
- 6) f has a of P. if $\lim_{x \to p} f(x)$ exists but it is not equal to f(p).
 - a) Continuity
 - b) Discontinuity
 - c) Removable discontinuity
 - d) Both a and b.
- 7) Let f and g defined on interval I. If f and g are continuous at $p \in I$. Then f + g

DAL

- is at p.
- a) Continuous
- b) Discontinuous
- c) Both a and b
- d) None of these

- 8) A function f is defined on an interval I is said to be on I, if given $\in > 0$, there exists a $\delta > 0$ such that if $x, y \in I$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$.
 - a) Uniformly continuous
 - b) Discontinuity
 - c) Removable discontinuity
 - d) Both b and c

9) If
$$\lim_{x \to c} \overline{f}(x) = l$$
, $\lim_{x \to c} \overline{g}(x) = m$ then $\lim_{x \to c} \left(\frac{f}{a}\right)(x) = \dots$ Provided $m \neq 0$

- a) *l m*
- b) *l/m*
- c) lm
- *d*) l + m

10) If f be a continuous one to one function on the closed interval [a,b] then f^{-1} is

.

- a) Dirichlet's function
- b) Discontinuous
- c) Identity function
- d) None of these

Answers:

1) b 2) a 3) c 4) c 5) d 6) c 7) a 8) a 9) b 10) d

2 Marks :

- 11) Define Limits.
- 12) If $\lim_{x\to c} f(x) = l$, $\lim_{x\to c} g(x) = m$ then $\lim_{x\to c} g(x) = l/m$ provided $m \neq 0$.

VEALTH

- 13) Define continuous function.
- 14) Prove that constant function is continuous.
- 15) Prove that identity function is continuous.
- 16) Define Dirichlet's function.
- 17) Define Type of Discontinuity.
- 18) Define Removable discontinuity.
- 19) Statement of intermediate value theorem.
- 20) Define uniform continuity.

- 21) Let f and g be defined on some neighborhood of c. If $\lim_{x \to c} f(x) = l$ and $\lim_{x \to c} g(x) = m$ then $\lim_{x \to c} (f + g)(x) = l + m$.
- 22) If $\lim_{x \to c} f(x) = l$ then $\lim_{x \to c} |f(x)| = |l|$.
- 23) The function f defined on R by $f(x) = x^2$ for all $x \in R$ is continuous.
- 24) Let f be the function defined on R by

$$f(x) = \begin{cases} \sin\frac{x}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

(Discuss or prove that) F has a removable discontinuity at x = 0 (nature of discontinuity or continuity of f at x = 0)

- 25) Let f and g defined on interval I. If f and g are continuous at $P \in I$, then f + g is continuous at p.
- 26) Let f and g defined on interval I. If f and g are continuous at $P \in I$, then fg is continuous at p.
- 27) If f is continuous at a point p and ϵR , then cf is continuous at p.
- 28) Let f and g be defined on an interval I and let $g(p) \neq 0$. If f and g are continuous at $P \in I$, then f/g is continuous.
- 29) Let f and g be defined on an interval I. If they are both continuous at $P \in I$. Then the functions $max \{ f, g \}$ and $min \{ f, g \}$ are both continuous at p.

JPPANANDAL

30) Let f is continuous then |f| is continuous.

10 Marks :

- 31) If $\lim_{x\to c} f(x) = l$ and $\lim_{x\to c} f(x) = m$ then = m.
- 32) Let f and g be defined on some neighborhood of c. If $\lim_{x \to c} f(x) = l$ and $\lim_{x \to c} g(x) = m$ then $\lim_{x \to c} f(g)(x) = lm$.
- 33) If $\lim_{x \to c} g(x) = m$ and $m \neq 0$ then $\lim_{x \to c} \frac{1}{g(x)} = \frac{1}{m}$
- 34) A function f defined on $I \subset R$ is continuous at $P \in I$ iff for every sequence < pn > in I which converges to P. We have $\lim_{n \to \infty} f(pn) = f(p)$.
- 35) A function f defined on R is continuous on R iff for each set G in R $f^{-1}(G)$ is an open set in R.

- 36) A function f defined on R is continuous on R iff for each closed set F in R. $f^{-1}(F)$ is also a closed set in R.
- 37) Let f and g be defined on an interval I and J respectively and let $f(I) \subset f(J)$. If f is continuous at $P \in I$ and g is continuous at f(p) then (gof) is continuous at p.
- 38) If f be a continuous on closed interval [a,b] and f(a)<0<f(b) then there exists a point x belongs to (a,b) such that f(x)=0.</p>
- 39) State and prove intermediate value theorem.
- 40) If f be a continuous one to one function onto the closed interval [a,b] then f^{-1} is also continuous.

UNIT - III

ON IS WEALTH

Choose the correct Answer :

1) If a function f is derivable at a point x_0 , then for each real number c, the function cf is also derivable at x_0 , and

a)
$$(cf)'(x_0) = cf'(x_0)$$

b) $(cf)(x_0) = cf(x_0)$

c)
$$(f)'(x_0) = f'(x_0)$$

- d) $(cf)''(x_0) = cf''(x_0)$
- 2) Differentiate of the $tan^{-1}x^2$
 - a) $\frac{2}{1+x^4}$
 - b) $\frac{4x}{1+x^4}$
 - c) $\frac{2x}{1+x^4}$
 - d) $\frac{1}{1+x^4}$
- 3) Differentiate of the $sinh^2 x$
 - a) 2 sinx cosx
 - b) 2 sinhx coshx
 - c) sinhx coshx
 - d) sinx cosx

- 4) Differentiate of the sinx coshx
 - a) Coshx coshx + sinhx sinhx
 - b) Cosx + Sinx
 - c) Coshx + Sinhx
 - d) Cosx coshx + sinx sinhx
- 5) Find $\frac{dy}{dx}$ for each of the implicitly defined function $ax^2 + 2hxy + by^2 = 1$.
 - a) $\frac{ax+hy}{hx+by}$
 - b) $-\frac{ax+hy}{hx+by}$
 - c) $-\frac{ay+hx}{hy+bx}$
 - d) $\frac{ay+hx}{hy+bx}$
- 6) The function f is continuous at $a \in M$ if $\lim_{x \to a} f(x) = \dots$
 - a) f(b)
 - b) *f*(*c*)
 - c) f(x)
 - d) *f*(*a*)
- 7) Find $\frac{dy}{dx}$ for each of the implicitly defined function $x = y \ln (xy)$
 - a) $\frac{y(x+y)}{x(x+y)}$

 - b) $\frac{y(x-y)}{x(x-y)}$
 - c) $\frac{y(x-y)}{x(x+y)}$

 - d) $\frac{y(x+y)}{x(x-y)}$
- 8) If real value function f as continuous at the point $a \in R$ if given $\epsilon > 0$ there

```
exist \delta > 0 such that ...
```

- a) 0
- b) 1
- c) $|f(x) f(a)| < \epsilon$
- d)Ø
- 9) Find $\frac{dy}{dx}$ for each of the implicitly defined function $x^m y^n = (x + y)^{m+n}$.
 - a) $\frac{y}{x}$

b) $\frac{x}{y}$ c) 1 d) 0 10) Find $\frac{dy}{dx}$ in = $a\cos\theta$, $y = a\sin\theta$. a) $\cot\theta$ b) $\cos\theta$ c) $-\cot\theta$ d) $-\tan\theta$

Answers :

1) a 2) c 3) b 4) d 5) b 6) d 7) c 8) c 9) a 10) c

2 Marks :

- 11) Define Derivability of an open interval.
- 12) Prove that identity function $f(x) = x \forall x \in R$ is derivable in R.
- 13) Prove that constant function $f(x) = c \forall x \in R$ is derivable on R.
- 14) Let f be a function defined on R by $f(x) = x^n \forall x \in R$. Prove that f is derivable on R.
- 15) f(x) = |x| check whether f is derivable at x=0.
- 16) Statement of Chain Rule.
- 17) Statement of Darbouxs theorem.
- 18) Let f be defined on R by setting

f(x)=|x-1|, for all $x \in R$

show that f is derivable at all points except x=1. Also show that $Rf^{1}(1) =$

ALTH

$$1, Lf^1(1) = -1$$

19) Show that the function f defined on R by setting

 $f(x) = x \sin(1/x), if x \neq 0.$

f(0)=0.

is not derivable at x = 0.

20) Let f be defined on R by setting

f(x) = |x - 2| + |x + 2|, for all $x \in R$.

show that f is not derivable at the points x = -2 and x = 2, and is derivable at every other point.

- 21) Let f be a function defined on an interval I. If f be derivable at a point x_o belongs to I, Then it is continuous at x_o (Derivability \Rightarrow Continuity).
- 22) If a function f is derivable at x_o , then the function cf is also derivable at x_o , for each real number c is also $(cf)^1 x_o = cf^1(x_o)$.
- 23) Let f and g be two function defined on I. If f and g are derivable at $x_o \in I$, then also if (f + g) and $(f + g)^1 x_o = f^1(x_o) + g^1(x_o)$.
- 24) Let f be defined on R by setting

$$f(x) = \begin{cases} 0, & if \ x \le 0, \\ x, & if \ x > 0. \end{cases}$$

Show that f is not derivable at x=0 and is derivable at every other point. 25) Let f be the function defined on R by setting.

$$f(x) = x^3 \sin(1/x), \text{ if } x \neq 0.$$

$$f(0)=0$$

Show that f^1 is continuous on R but is not derivable at x=0.

26) Let f be the function defined on R by setting.

$$f(x) = x^4 \sin\left(\frac{1}{x}\right), \text{ if } x \neq 0.$$

$$f(0)=0.$$

27) Let f be defined on R by setting

$$f(x) = \frac{e^{-1/x} - e^{1/x}}{e^{-1/x} + e^{1/x}}, \text{ if } x \neq 0$$

f(0) = 0, if x = 0

show that f is not derivable at x=0. Do $Rf^{1}(1)$ and $Lf^{1}(1)$ exist?

28) Let f be defined on R by setting

$$f(x) = x^{2n} \sin\left(\frac{1}{x}\right)$$
 if $x \neq 0$, and $f(0) = 0$.

prove that f^n exists for all $x \in R$ but f^n is not continuous at x=0.

29) Let f be defined on R by setting

 $f(x) = x^{2n+1} sin(\frac{1}{x})$ if $x \neq 0$, and f(0) = 0.

prove that f^n exists for all $x \in R$, f^n is continuous at x=0, but f^n is not derivable at x=0.

30) Let *f* be a function with domain *D* and let *g* be the function defined on *D* by setting g(x) = xf(x), for all x ∈ D. Prove that if f be continuous at x=0, then g is derivable at x=0.

10 Marks :

- 31) If f and g be two functions defined on I. If f and g are derivable at $x_0 \in I$. Then also if fg and also $(fg)^1x_0 = f^1(x_0) \cdot g(x_0) + f(x_0) \cdot g^1(x_0)$.
- 32) Let f be derivable at x_0 and let $f(x_0) \neq 0$. Then the function 1/f is derivable at x_0 and also $(1/f)^1 x_0 = -f^1(x_0)/f(x_0)^2$.
- 33) State and prove Chain Rule theorem.
- 34) Let f be a continuous one to one function defined on an interval and let f be derivable at x_0 , with $f^1(x_0) \neq 0$. Then the inverse of the function f is derivable at $f(x_0)$ and its derivative at $f(x_0)$ is $1/f(x_0)$.
- 35) State and prove Darboux's theorem.
- 36) If f and g be two functions having the same domain D, and if f + g be derivable at $x_0 \in D$, is it necessary that f and g be both derivable at x_0 .
- 37) If f and g be tow functions having the same domain D, and if fg be derivable at $x_0 \in D$, is it necessary that f and g be both derivable at x_0 ?
- 38) If f be derivable at x_0 , then show that |f| is also derivable at x_0 , provided $f(x_0) \neq 0$.
- 39) Show by means of an example that if $f(x_0) = 0$, then f may be derivable at x_0 and |f| may not be derivable at x_0 .
- 40) If f is defined and derivable on [a, b], f(a) = f(b) = 0, and $f^{1}(a)$ and $f^{1}(b)$ are of the same sign, then prove that f must vanish at least once in]a, b[.

EDUCATIONIT S WEALTH

Choose the correct Answer :

 Find the number θ that appears in the conclusion of Lagrange's mean value theorem in f(x) = x²; a = 1, h = 1/5.

a)
$$\sqrt{\left(\frac{1}{3}\right) - 5}$$

b)
$$\sqrt{\left(\frac{91}{3}\right) - 5}$$

c) $\sqrt{\left(\frac{9}{3}\right) - 5}$
d) $\sqrt{\left(\frac{1}{93}\right) - 5}$

2) Find the number θ that appears in the conclusion of Lagrange's mean value theorem in $f(x) = log_e x$; a = 1, h = 1

- a) $(log_e 1.1)^{-1} 10$
- b) $(log_e 1.1)^{-1} 1$
- c) $(log_e 1.10)^{-1} 1$
- d) $(log_e 1.10)^{-1} 10$
- 3) Calculate a value of c for which

$$\frac{f(c) - f(a)}{g(b) - g(c)} = \frac{f^1(c)}{g^1(c)}$$

for each of the following pairs of function.

$$f(x) = x^2, g(x) = x^4; a = 2, b = 4$$

- a) √20
- b √<u>30</u>
- c) √<u>10</u>
- d) $\sqrt{15}$

4) The value of c in Rolle's theorem for the function $f(x) = x^3 - 3x$ in the interval

IRUPPANANDAL

- $[0, \sqrt{3}]$ is
- a) 1
- b) 1
- c) 3/2
- d) 1/3
- 5) Suppose $f:[a,b] \to R$ is continuous on [a,b] and f is differentiable on (a,b). If f(a) = f(b) = 0, there is $c \in (a,b)$: f'(c) = 0
 - a) Rolle's theorem
 - b) Mean value theorem
 - c) Intermediate value theorem
 - d) None of these

- 6) For the function $f(x) = x^2 2x + 1$. We have Rolles point at x=1. The coordinate axes are then rotated by 45 degrees in anticlockwise sense. What is the position of new Rolles point with respect to the transformed coordinate axes?
 - a) 1/2
 - b) 5/2
 - c) 3/2
 - d) 1
- 7) The necessary condition for the maclaurin expansion to be true for function f(x) is
 - a) f(x) should be continuous
 - b) f(x) should be differentiable
 - c) f(x) should exists at every point
 - d) f(x) should be continuous and differentiable
- 8) The expansion of $e^{\sin(x)}$ is?

a)
$$1 + x + \frac{x^2}{2} + \frac{x^4}{8} + \cdots$$

b)
$$1 + x + \frac{x^2}{2} - \frac{x^4}{8} + \cdots$$

c)
$$1 + x - \frac{x^2}{2} + \frac{x^4}{8} + \cdots$$

d)
$$1 + x + \frac{x}{6} - \frac{x}{10} + \frac{x}{10} +$$

- 9) Given f(x) = In(cos(x)), calculate the value of $In\left(cos\left(\frac{\pi}{2}\right)\right)$.
 - a) -1.741
 - b) 1.741
 - c) 1.563
 - d) -1.563
- 10) The explicit formula for the geometric sequence 3,15,75,375,... is

PANAI

- a) $2 * 6! * 3^{n-1}$
- b) $3 * 5^{n-1}$
- c) $3! * 8^{n-1}$
- d) $7 * 4^{n-1}$

Answers :

1) b 2) a 3) c 4) a 5) a 6) c 7) d 8) b 9) a 10) b

2 Marks :

- 11) Find 'c' of Lagrange's mean value theorem of $f(x) = x^2$ where a = 1, h = 1/5.
- 12) Define Geometric significance of Rolle's theorem.
- 13) Statement of Rolle's theorem.
- 14) Verify the hypotheses and the conclusion of Rolle's theorem for the function f defined on [a,b] in each of the following case $f(x) = x^2$, a = -1, b = 1.
- 15) Verify the hypotheses and the conclusion of Rolle's theorem for the function f defined on [a,b] in each of the following case $f(x) = \cos x$, $a = -\pi/2$, $b = \pi/2$.
- 16) Statement of Lagrange's mean value theorem.
- 17) Statement of Cauchy's mean value theorem.
- 18) Statement of generalized mean value theorem.
- 19) $f(x) = x^2 2x + 3$, where a = 1, h = 1/2.
- 20) Write the power series expansion of some standard functions.

5 Marks :

- 21) If f is defined and continuous on [a,b] and is derivable in (a,b) and if $f^1(x) = 0 \forall x \in (a, b)$ then f(x) has a constant value throughout the interval [a,b]
- 22) State and prove Generalized mean value theorem.
- 23) Find the Maclaurin's of the function $f(x) = e^x$.
- 24) Find the Maclaurin's expansion for the function f(x) = cosx.
- 25) Prove that if p be any polynomial and p¹ the derivative of p, then between any two consecutive zeros of p¹, there lies at the most one zero of p.
- 26) Show that there is no real number k for which the equation $x^3 3x + k = 0$, has two distinct roots in [0,1].
- 27) Verify that on the curve $y = px^2 + qx + r(p, q, r)$ being real numbers, $p \neq 0$, the chord joining the points for which x = a, x = b is parallel to the tangent at the point given by x = 1/2(a + b).

- 28) Prove that for any quadratic function $px^2 + qx + r$, the value of θ in Lagrange's theorem is always 1/2, whatever p,q,r,a,h may be.
- 29) Calculate a value of c for which

$$\frac{f(c) - f(a)}{g(b) - g(c)} = \frac{f^1(c)}{g^1(c)}$$

for each of the following pairs of function.

$$f(x) = e^x, g(x) = e^{-x}; a = 0, b = 1$$

30) Calculate a value of c for which

$$\frac{f(c) - f(a)}{g(b) - g(c)} = \frac{f^{1}(c)}{g^{1}(c)}$$

for each of the following pairs of function.

 $f(x) = sinx, g(x) = cosx; a = -\pi/2, b = 0$

10 Marks :

- 31) State and prove Rolle's therorem.
- 32) State and prove Lagrange's mean value theorem.
- 33) Find c of Lagrange's mean value theorem if f(x) = x(x-1)(x-2) where a = 0, b = 1/2.
- 34) State and prove Cauchy's mean value theorem.
- 35) State and prove Taylor's theorem with Lagr4ange's form of reminder.
- 36) State and prove Taylor's theorem with Cauchy's from of remainder.
- 37) Find the Maclaurines expansion for the function of f(x) = sinx
- 38) Find the Maclaurine's expansion for the function $f(x) = (1 + x)^m$.
- 39) Calculate a value of c for which

$$\frac{f(c) - f(a)}{g(b) - g(c)} = \frac{f'(c)}{g'(c)}$$

for each of the following pairs of function.

$$f(x) = x^2, g(x) = x; a = 0, b = 1$$

40) If f''(x) be defined on [a,b] and if $|f''(x)| \le M$, for all x in [a,b], and if c be any real number between a and b, then prove that

$$\left| f(c) - f(a) - (c - a) \left\{ \frac{f(b) - f(a)}{b - a} \right\} \right| \le \frac{1}{8} (b - a)^2 M.$$

UNIT - V

Choose the correct Answer :

- 1) If f is a Riemann integrable function on [a,b] and λ is any real number then following holds
 - a) $\lambda \int_{a}^{b} f(x) dx = \int_{a}^{b} \lambda f(x) dx$
 - b) $\lambda \int_a^b f(x) dx \neq \int_a^b \lambda f(x) dx$
 - c) $\lambda \int_{a}^{b} f(x) dx \ge \int_{a}^{b} \lambda f(x) dx$
 - d) None of these
- 2) If $\int_{-a}^{b} f \, dx$ and $\int_{a}^{-b} f \, dx$ are lower and upper Riemann integrable on [a,b]. Then
 - a) $\int_{-a}^{b} f \, dx \ge \int_{a}^{-b} f \, dx$
 - b) $\int_{-a}^{b} f \, dx = \int_{a}^{-b} f \, dx$
 - c) $\int_{-a}^{b} f \, dx \leq \int_{a}^{-b} f \, dx$
 - d) $\int_{-a}^{b} f dx \neq \int_{a}^{-b} f dx$
- 3) f: [a, b] \rightarrow R, f is Riemann integrable then
 - a) $\left|\int_{a}^{b} f(x) dx\right| \leq \int_{a}^{b} |f(x)| dx$
 - b) $\int_{a}^{b} |f(x)| dx \le \left| \int_{a}^{b} f(x) dx \right|$
 - c) $\int_{a}^{b} |f(x)| dx = \left| \int_{a}^{b} f(x) dx \right|$
 - d) $\left|\int_{a}^{b} f(x)dx\right| = \int_{a}^{b} |f(x)|dx$
- 4) If f is Riemann integrable with respect to α on [a,b], then
 - a) f is increasing and α is bounded function
 - b) f is bounded and α is increasing function
 - c) f and α are both bounded
 - d) f and α are both increasing
- 5) A function is a monotonic function f if
 - a) f is only a decreasing function
 - b) f is only a increasing function
 - c) f is either increasing or decreasing function

d) None of these

- 6) Singular monotonic function on [a,b] have
 - a) $f(x) = 0, \forall x \in [a, b]$
 - b) $f'(x) = 0, \forall x \in [a, b]$
 - c) $f'(x) \neq 0, \forall x \in [a, b]$
 - d) $f(x) \neq 0, \forall x \in [a, b]$
- 7) If f is bounded variation on [a,b] iff
 - a) f is the quotient of two monotone real valued function on [a,b]
 - b) f is the product of two monotone real valued function on [a,b]
 - c) f is the difference of two monotone real valued function on [a,b]
 - d) None of these

8) If f is integrable on [a,b], then the function $F(x) = \int_a^x f'(t) dt$

- a) A continuous function of bounded variation on [a,b]
- b) A discontinuous function of bounded variation on [a,b]
- c) A discrete function of bounded variation on [a,b]
- d) None of this

9) If f is integrable on [a,b] and $\int_a^x f(t)dt = 0$ for all $x \in [a, b]$, then

- a) f(t) = 0 nowhere in [a,b]
- b) f(t) = 0 almost everywhere in [a,b]
- c) f(t) is not equal to zero almost everywhere in [a,b]
- d) None of these

10) If \emptyset is a convex function on $(-\infty, \infty)$ and f an intergrable function on [0,1] then

EALTH

- a) $\int \emptyset f(t) dt \ge \emptyset [\int f(t) dt]$
- b) $\int \emptyset f(t) dt = \emptyset [\int f(t) dt]$
- c) $\int \emptyset f(t) dt \leq \emptyset [\int f(t) dt]$
- d) $\int \phi f(t) dt < \phi [\int f(t) dt]$

Answers :

1) a 2) c 3) b 4) b 5) c 6) b 7) c 8) a 9) b 10) a

2 Marks :

- 11) Define Refinement of a partition.
- 12) Define partition of a closed interval.

- 13) Define Norm of a partition.
- 14) Define Upper integral.
- 15) Define Lower integral.
- 16) Define Riemann integral.
- 17) Statement of conditions for integrability.
- 18) Statement of second form on integrability.
- 19) Statement of integrability of product.
- 20) Statement of integrability Quotient.

- 21) Let I=[a,b] be a finite closed interval of $a = x_0 < x_1 < x_2 < ... < x_n = b$ then the finite order set $D = \{x_0, x_1, ..., x_n\}$ is called a partition of I.
- 22) Explain Upper and lower darboux sums.
- 23) Explain oscillatory sum.
- 24) If f is monotonic in [a,b] then it integrable in [a,b].
- 25) Equivalence of the two definition of the Riemann integral.
- 26) Every continuous function is integrable.
- 27) State and prove continuity of the integral function.
- 28) State and prove Derivability of the integral function...
- 29) Prove if f'(x) > 0 in]a, ∞ [and f is continuous at a, then f is strictly increasing in [a, ∞ [.
- 30) State and prove integrability of product.

10 marks :

31) $D_1 < D_2 \Rightarrow i$ $s(D_1) \ge s(D_2)$. ii) $S(D_1) \le S(D_2)$.

ie) In proceeding from any divisions to a finer division the upper sum cannot increasing and the lower sum cannot decrease.

- 32) $\int_{a}^{\underline{b}} f(x)dx \ge \int_{\overline{a}}^{b} f(x)dx$ Prove that the lower Riemann integral cannot be greater than the upper Riemann integral.
- 33) To every $\in > 0$ there corresponds a $\delta > 0$ such that $s(D) < \int_a^{\overline{b}} f(x) dx + \epsilon$ for every D such that $||D|| \le \delta$.

- 34) To every $\in > 0$ there corresponds a $\delta > 0$ such that $S(D) < \int_{\underline{a}}^{b} f(x)dx \in$ for every division D such that $||D|| < \delta$.
- 35) State and prove first form of condition for integrability.
- 36) State and prove integrability by parts.
- 37) State and prove First mean value theorem of integral calculus.
- 38) State and prove Second form of intergrability.
- 39) State and prove Fundamental theorem of integral calculus.
- 40) State and prove Second mean value theorem.

