

ஸ்ரீ-ல-ஸ்ரீ காசிவாசி சுவாமிநாத சுவாமிகள் கலைக் கல்லூரி தருப்பனந்தாள் – 612504

S.K.S.S ARTS COLLEGE, THIRUPPANANDAL - 612504

QUESTION BANK

Title of the Paper

SEQUENCES AND SERIES

COURSE - II MATHS

Prepared by

A.NIRAIMATHI M.Sc.,

Assistant Professor

Department of Mathematics

CORE COURSE V SEQUENCES AND SERIES

OBJECTIVES:

1. To lay a good foundation for classical analysis

2. To study the behaviour of sequences and series.

Unit I :

Sequences – Bounded Sequences – Monotonic Sequences – Convergent Sequence – Divergent Sequences – Oscillating sequences

Unit II :

Algebra of Limits – Behaviour of Monotonic functions

Unit III

Some theorems on limits – sub sequences – limit points: Cauchy sequences
Unit IV :

Series – infinite series – Cauchy's general principal of convergence – Comparison – test theorem and test of convergence using comparison test (comparison test statement only, no proof)

Unit V :

Test of convergence using D Alembert's ratio test – Cauchy's root test – Alternating Series – Absolute Convergence (Statement only for all tests) Book for Study :

Dr. S.Arumugam & Mr.A.Thangapandi Isaac Sequences and Series – New Gamma Publishing House – 2002 Edition.

Unit I : Chapter 3 : Sec. 3.0 – 3.5 Page No : 39-55

Unit II : Chapter 3 : Sec. 3.6, 3.7 Page No:56 - 82

Unit III : Chapter 3 : Sec. 3.8-3.11, Page No:82-102

Unit IV : Chapter 4 : Sec. (4.1 & 4.2) Page No : 112-128.

Unit V : Relevant part of Chapter 4 and Chapter 5: Sec. 5.1 & 5.2

Page No:157-167.

Book for Reference :

1. Algebra – Prof. S.Surya Narayan Iyer

2. Algebra – Prof. M.I.Francis Raj

UNIT - I

Choose the correct Answer :

- 1) The nth term of the sequence $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots\right\}$ is
 - a) $\frac{1}{n-1}$
 - b) $\frac{1}{2n}$
 - C) $\frac{1}{2(n+1)}$
 - d) None of these
- 2) The following sequence {2,3,5,7, ... } is a sequence of
 - a) Real number
 - b) Prime number
 - c) Even number
 - d) Odd number
- 3) The nth Term of the sequence $\{1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, ...\}$ is
 - a) For n even $\frac{1}{n-\frac{n}{2}}$ for n odd1
 - b) For n even $\frac{1}{n+\frac{n}{2}+1}$ for n odd 1
 - c) For n even $\frac{1}{n-\frac{n}{2}+1}$ for n odd 1
 - d) For n even $\frac{1}{n+\frac{n}{2}}$ for n odd 1
- 4) The nth term of the sequence $\left\{2, \frac{-3}{2}, \frac{4}{3}, \frac{-5}{4}, ...\right\}$ is
 - a) $1 + \frac{1}{n}$

- b) $(-1)^{n-1} \left(1 \frac{1}{n}\right)$ c) $(-1)^{n-1} \left(1 + \frac{1}{n}\right)$
- d) None of these
- 5) A monotone sequence $\{a_n\}_{n=1}^{\infty}$ is convergent
 - a) It is bounded
 - b) It is unbounded
 - c) It is decreasing
 - d) None of these
- 6) The sequence $\left[\frac{\cos\frac{n\pi}{2}}{n}\right]_{n=1}^{\infty}$ is
 - a) Convergent to 0
 - b) Divergent
 - c) Convergent to 1
 - d) None of these
- 7) A: Every bounded sequence is convergent
 - B: Every convergent sequence is bounded

WEALTH

- a) A and B are true.
- b) A is true, B is false.
- c) B is true, A is false.
- d) A and B are false.
- 8) The sequence {1,0,1,0,1,0, ... } is
 - a) Increasing sequence.
 - b) Decreasing sequence.

- c) Monotone sequence.
- d) None of these.

9) If $\{a_n\}_{n=0}^{\infty}$ converges to a, for all n, $a \ge 0$, then $\{\sqrt{a_n}\}_{n=0}^{\infty}$ is

- a) Converges to \sqrt{a} .
- b) Diverges to \sqrt{a}
- c) Converges to a
- d) Diverges to a
- 10) If $\{a_n\}_{n=0}^{\infty}$ converges to *A*, then
 - a) $\{|a_n|\}_{n=0}^{\infty}$ Converges to A.
 - b) $\{|a_n|\}_{n=0}^{\infty}$ Converges to |A|.
 - c) $\{|a_n|\}_{n=0}^{\infty}$ is divergent sequence.
 - d) None of these.

Answers :

1) b 2) b 3) c 4) c 5) a 6) a 7) c 8) d 9) a 10) b

NEALTH

- 11) Define Sequences.
- 12) Define Constant sequence.
- 13) Define Geometric sequence.
- 14) Definition Fibonacci sequence.
- 15) Define Bounded sequence.
- 16) Define Monotonic.
- 17) Define Convergent sequence.

- 18) Define Divergent sequence.
- 19) To prove $\lim_{n\to\infty} \frac{1}{n} = 0$
- 20) To prove $(n) \rightarrow \infty$.

- 21) Write the first five terms of each of the following sequences $\left(\frac{(-1)^n}{n}\right)$.
- 22) Write the first five terms of each of the following sequences $\left(\frac{2}{3}\left(1-\frac{1}{10^n}\right)\right)$
- 23) Determine the range of the following sequences (n).
- 24) Determine the range of the following sequences (2n).
- 25) Determine which of the sequences given in examples of
 - i) Bounded above.
 - ii) Bounded below.
 - iii) Bounded.
- 26) Determine the l.u.b and g.l.b of the following sequences if 2,-2,1,-1,1,-1,.....
- 27) Show that if (a_n) is a monotonic sequence then $\left(\frac{a_1+a_2+\cdots a_n}{n}\right)$ is also monotonic sequence.
- 28) Give an example of a sequence (a_n) such that (a_n) is monotonic increasing and bounded above.
- 29) Determine which of the following sequences are monotonic $(\log n)$.
- 30) A sequence cannot converge to two different limits.

10 Marks :

31) Write the first five terms of each of the following sequences $\left(\frac{\cos nx}{n^2+r^2}\right)$.

- 32) Write the first five terms of each of the following sequences (n!).
- 33) Determine the range of the following sequences (2n 1).
- 34) Write the first five terms of each of the following sequences

$$f(n) = \begin{cases} n \text{ if } n \text{ is odd} \\ \frac{1}{n} \text{ if } n \text{ is even} \end{cases}$$

- 35) Determine the range of the following sequences The constant sequence *a*, *a*, *a*,
- 36) Give examples of sequences (a_n) Such that
 - i) (a_n) is bounded above but not bounded below.
 - ii) (a_n) is bounded below but not bounded above.
 - iii) (a_n) is a bounded sequence.
 - iv) (a_n) is neither bounded above nor bounded below.
- 37) Determine the l.u.b and g.l.b of the following sequences if $1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}}, \dots, \frac{1}{\sqrt{n}}, \dots$
- 38) Determine which of the following sequences are monotonic $((-1)^{n+1}n)$
- 39) If (a_n) is monotonic increasing show that (λa_n) is increasing if λ is positive and (λa_n) is decreasing if λ is negative.

40) Prove that

- i) $\lim_{n \to \infty} \frac{1}{n^2} = 0.$
- $\text{ii)} \lim_{n \to \infty} \left(1 + \frac{1}{n!} \right) = 1.$

UNIT - II

Choose the correct Answer :

1) A sequence $\{a_n\}_{n=1}^{\infty}$ is bounded iff there is a real number S such that

.....

- a) $|a_n| \leq S$ for all n.
- b) $|a_n| \ge S$ for all n.
- c) $|a_n| = S$ for all n.
- d) None of these.
- 2) A sequence $\{a_n\}_{n=1}^{\infty}$ is bounded from below if for real number R
 - a) $a_n \leq R$ for all n.
 - b) $a_n \ge R$ for all n.
 - c) $a_n = R$ for all n.
 - d) None of these.
- 3) If $\{a_n\}_{n=1}^{\infty}$ converges to A and B both then
 - a) *A* > *B*
 - b) A = B
 - c) $A \leq B$
 - d) None of these
- 4) A monotonic increasing sequence which is not bounded above......
 - a) Diverges to ∞
 - b) Diverges to $-\infty$
 - c) Converges to its l.u.b.
 - d) Converges to its g.l.b.
- 5) A monotonic decreasing sequence which is Converges to its g.l.b.
 - a) Bounded above.
 - b) Bounded below.
 - c) Not bounded above.
 - d) Not bounded below.

6) Evaluate the limits of the following sequence as $n \to \infty$ if $\left(\sqrt{(n^2 + n - n)}\right)$

- a) 1
- b) 3/2
- c) 1/2

d) 4/5

- 7) Evaluate the limits of the following sequence as $n \to \infty$ if $((-1)^n/n)$
 - a) ∞
 - b) -1
 - **c)** 1
 - d) 0
- 8) A sequence $\{a_n\}_{n=1}^{\infty}$ is bounded from above if for real number R
 - a) $a_n \ge R$ for all n.
 - b) $a_n \leq R$ for all n.
 - c) $a_n = R$ for all n.
 - d) None of these.
- 9) Let $\{a_n\}_{n=0}^{\infty}$ and $\{b_n\}_{n=0}^{\infty}$ be two sequence such that $\{a_n\}_{n=0}^{\infty}$ and $\{a_nb_n\}_{n=0}^{\infty}$ converges respectively to A and AB, then $\{b_n\}_{n=0}^{\infty}$ converges iff.....
 - a) *A* ≠ 0
 - b) A = 0
 - c) B = 0
 - d) None of these.

10) If $\{b_n\}_{n=1}^{\infty}$ is an increasing bounded sequence then for the sequence $\{b_n\}_{n=1}^{\infty}$ if

following statement is false

- a) $\{b_n\}_{n=1}^{\infty}$ is a convergent sequence.
- b) $\{b_n\}_{n=1}^{\infty}$ is a divergent sequence.
- c) $\{b_n\}_{n=1}^{\infty}$ is a monotonic sequence.
- d) $\{b_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Answers :

1) a 2) a 3) b 4) a 5) b 6) c 7) d 8) a 9) a 10) b

- 11) If $(a_n) \rightarrow a$ and $k \in R$ then $(ka_n) \rightarrow ka$.
- 12) If $(a_n) \rightarrow a$ then $(|a_n|) \rightarrow |a_n|$.
- 13) If $(a_n) \rightarrow a$, $(b_n) \rightarrow b$ and $a_n \leq b_n$ for all n, then $a \leq b$.
- 14) Show that $\lim_{n \to \infty} \frac{n}{\sqrt{n^2+1}} = 1$.

- 15) Show that $\lim_{n \to \infty} \frac{\sin n}{n} = 0$.
- 16) Evaluate the limits of the following sequences as $n \to \infty$ if $\left(\frac{3n-4}{2n+7}\right)$.
- 17) Evaluate the limits of the following sequences as $n \to \infty$ if $\left(\frac{4-2n+6n^2}{7-6n+9n^2}\right)$.
- 18) Show that following sequence diverge to ∞ if $(n^3 + n^2 + n + 1)$.
- 19) Prove that $\left(\frac{n!}{n^n}\right)$ converges.
- 20) Verify whether the following sequences are monotonic and discuss their behavior $\left(\frac{2n-7}{3n+2}\right)$.

21) If
$$(a_n) \rightarrow a$$
 and $(b_n) \rightarrow b$ then $(a_n b_n) \rightarrow ab$.
22) If $(a_n) \rightarrow a$ and $a_n \ge 0$ for all n then $a \ge 0$.
23) If $(a_n) \rightarrow l$ and $(b_n) \rightarrow l$ and $a_n \le c_n \le b_n$ for all n, then $(c_n) \rightarrow l$.
24) If $(a_n) \rightarrow \infty$ and $(b_n) \rightarrow \infty$ then $(a_n + b_n) \rightarrow \infty$.
25) If $(a_n) \rightarrow \infty$ and $(b_n) \rightarrow \infty$ then $(a_n b_n) \rightarrow \infty$.
26) Show that $\lim_{n \to \infty} \left(\frac{1^2 + 2^2 + \dots + n^2}{n^3}\right) = \frac{1}{3}$.
27) Show that $\lim_{n \to \infty} \left(\frac{1}{\sqrt{(2n^2+1)}} + \frac{1}{\sqrt{(2n^2+2)}} + \dots + \frac{1}{\sqrt{(2n^2+n)}}\right) = \frac{1}{\sqrt{2}}$.
28) If $(a_n) \rightarrow -\infty$ and $(b_n) \rightarrow -\infty$ then show that $(a_n + b_n) \rightarrow -\infty$ and $(a_n b_n) \rightarrow \infty$.
29) Let $a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$. Show that $\lim_{n \to \infty} a_n$ exists and lies between
2 and 3.
30) Let $a_n = 1 + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$. Show that (a_n) converges.
10 Marks :
31) If $(a_n) \rightarrow a$ and $(b_n) \rightarrow b$ then $(a_n + b_n) \rightarrow a + b$ and $(a_n - b_n) \rightarrow a - b$.
32) If $(a_n) \rightarrow a$ and $a_n \ne 0$ for all n and $a \ne 0$, then $\left(\frac{1}{a_n}\right) \rightarrow \frac{1}{a}$.
33) If $(a_n) \rightarrow a$ and $a_n \ge 0$ for all n and $a \ne 0$, then $(\sqrt{a_n}) \rightarrow \sqrt{a}$.
34) Let $(a_n) \rightarrow \infty$. Then
i) if $c > 0$, $(c a_n) \rightarrow \infty$.

- ii) if c < 0, $(c a_n) \rightarrow -\infty$.
- 35) Show that $\lim_{n \to \infty} \frac{3n^2 + 2n + 5}{6n^2 + 4n + 7} = \frac{1}{2}$.

- 36) Show that $\lim_{n\to\infty} (a^{1/n}) = 1$ where a > 0 is any real number.
- 37) Show that $\lim_{n \to \infty} (n^{1/n}) = 1$.
- 38) If $(a_n) \to -\infty$, then show that $(ka_n) \to -\infty$ if k > 0 and $(ka_n) \to \infty$ if k < 0.
- 39) Show that the sequence $\left(1 + \frac{1}{n}\right)^n$ converges.
- 40) Discuss the behavior of the geometric sequence (r^n) .

UNIT - III

Choose the correct Answer :

- If a sequence is not a Cauchy sequence, then it is a
 - a) Divergent sequence
 - b) Convergent sequence
 - c) Bounded sequence
 - d) None of these
- 2) A: Every convergent sequence is Cauchy sequence.
 - B: Every Cauchy sequence is a convergent sequence.
 - a) A and B both are false
 - b) A is true
 - c) B is true
 - d) A and b both true
- 3) Every Cauchy sequence is
 - a) Unbounded sequence
 - b) Bounded sequence
 - c) Divergent sequence
 - d) None of these
- 4) Let {a_n}[∞]_{n=1} be a sequence converges to 0 and {b_n}[∞]_{n=1} be a sequence that is bounded, then {a_nb_n}[∞]_{n=1} is a sequence that
 - a) Converges to one
 - b) Converges to zero
 - c) Is divergent sequence
 - d) None of these

- 5) Let sequence {a_n}_{n=1}[∞] converges to A and sequence {b_n}_{n=1}[∞] converges to B, with a_n ≤ b_n for all n, then
 - a) $A \leq B$
 - b) A = B
 - c) $A \ge B$
 - d) None of these
- 6) Let sequence $\{a_n\}_{n=1}^{\infty}$ converges to A and sequence $\{b_n\}_{n=1}^{\infty}$ converges to A and B respectively, then $\{a_n/b_n\}_{n=1}^{\infty}$ converges to A/B if
 - a) $b_n \neq 0$ for all n and B = 0
 - b) $b_n \neq \text{for some n}$
 - c) $b_n \neq 0$ for all n and $B \neq 0$
 - d) None of these
- 7) If $\{a_n\}_{n=1}^{\infty}$ is decreasing and bounded, then $\{a_n\}_{n=1}^{\infty}$
 - a) Convergent sequence
 - b) Divergent sequence
 - c) Non-Cauchy sequence
 - d) None of these
- 8) Let (a_n) be a sequence. Let (n_k) be a strictly increasing sequence of natural number. Then (a_{n_k}) is called a of (a_n) .

NEALTH

- a) Sequence
- b) Subsequence
- c) Bounded
- d) None of these
- 9) Every sequence (a_n) has a
 - a) Monotonic sequence
 - b) Sub sequence
 - c) Sequence
 - d) None of these
- 10) Find all the limit points of each of the following sequence (1/n)
 - a) ∞
 - b) -∞
 - c) 1
 - d) 0

Answers :

1) a 2) d 3) b 4) b 5) a 6) c 7) a 8) b 9) a 10) d

2 Marks :

- 11) Statement of Cauchy's second limit theorem.
- 12) Show that $\lim_{n \to \infty} 1/n(1 + \frac{1}{2} + \dots + \frac{1}{n}) = 0$
- 13) Show that $\lim_{n \to \infty} n^{1/n} = 1$
- 14) Define Sub sequence.
- 15) Define Peak point.
- 16) Define Limit points.
- 17) Define Cauchy sequences.
- 18) Any convergent sequence is a Cauchy sequence.
- 19) Any sequence (a_n) is a subsequence of itself.
- 20) Find all the limit point of (n^2) .

- 21) If a sequence (a_n) is converges to I, then every subsequence (a_{n_k}) of an also converges to I.
- 22) If the subsequences (a_{2n-1}) and (a_{2n}) of a sequences a_n . Converge to the same limit I, then a_n also converges to I.
- 23) Every bounded sequence as a convergence subsequence.
- 24) Every bounded sequence has at least one limit point.
- 25) Any Cauchy sequence is a bounded sequence.
- 26) Let (a_n) be a Cauchy sequence. If (a_n) has a subsequence (a_{n_k}) converging to I, then $(a_n) \rightarrow l$.
- 27) A sequence (a_n) in R is convergent iff it is a Cauchy's sequence.

- 28) Evaluate the limits of the following sequence whose n^{th} terms are given $\frac{1}{n}(1+2^{1/2}+3^{1/3}+\dots+n^{1/n}).$
- 29) Construct a sequence having exactly 10 limit points..
- 30) Find all the limit point of (2n 1).

- 31) State and prove Cauchy's first limit theorem.
- 32) State and prove Cesaro's theorem.
- 33) State and prove Cauchy's second limit theorem.
- 34) Let (a_n) be any sequence and $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = l$. If l > 1 then $(a_n) \to 0$.
- 35) If the sequences a_n and $b_n \to 0$ and b_n is strictly monotonic decreasing then $\lim_{n \to \infty} {\binom{a_n}{b_n}} = \lim_{n \to \infty} {\binom{a_n - a_{n+1}}{b_n - b_{n+1}}}$ provided the limit on the right hand side exists whether finite or infinite.
- 36) Prove that $\frac{1}{n}[(n+1)(n+2)...(n+n)]^{1/n} \to 4/e$
- 37) Let (a_n) be a sequence. A real number 'a' is a limit point of (a_n) iff there exists a sub sequence (a_{n_k}) of (a_n) converging to 'a'.
- 38) A sequence (a_n) converges to l iff (a_n) is bounded and l is the only limit point of the sequence.
- 39) Every sequence (a_n) has a monotonic subsequence.
- 40) Show that a sequence (a_n) diverges to ∞ iff ∞ is the only limit point of (a_n) .

UNIT - IV

Choose the correct Answer :

1) Determine whether the sequence defined by $a_n = In(2n^3 + 2) - In(5n^3 + 2n^2 + 4)$ converges or diverges. If it converges, find the limit.

a) 0 b) $In\left(\frac{2}{5}\right)$ c) $-In\left(\frac{2}{5}\right)$ d) 2

2) Find all possible value of x for which the series $\sum \frac{9+x^n}{5^n}$ converges.

- a) It is not possible to find such x because the series diverges.
- b) x > 0
- c) |x| < 1
- d) -5 < x < 5

3) Determine whether the sequence defined by $a_n = n^2 \cos\left(\frac{2}{n^2} + \frac{\pi}{2}\right)$ converges or diverges. If it converges, find the limit.

- a) -2
- b) -1
- c) 1
- d) 2
- 4) Which of the following sequence converge?

$$a_n = \frac{(2n+1)!}{(n+4)!}, \ b_n = \frac{\pi^n}{n^{100}}, \ c_n = \frac{\ln(n^{10})}{\sqrt{n}}, \ d_n = \frac{n^4}{(n+1)!}$$

- a) $\{d_n\}$ only
- b) $\{a_n\}, \{b_n\}$ only
- c) $\{c_n\}, \{d_n\}$ only
- d) $\{a_n\}, \{d_n\}$ only
- 5) Assume the terms of a sequence) $\{a_n\}$ are given by the following formula

 $a_n = \frac{1}{3n^3} + \frac{2^2}{3n^3} + \frac{3^2}{3n^3} + \dots + \frac{n^2}{3n^3}$ Find the limit of the sequence or conclude that it diverges. a) 0 b) 1 c) $\frac{1}{9}$ d) $\frac{1}{6}$

6) Determine the value of series $\sum_{n=0}^{\infty} \frac{2^{n-2}+3^{n+1}}{4^n}$ or conclude that it diverges.

- a) $\frac{25}{2}$
- · 2
- b) $\frac{97}{8}$
- c) $\frac{13}{2}$
- d) 4
- 7) Assume $\sum_{n=1}^{\infty} a_n$ is an infinite series with partial sums given by $S_N = 4 + \frac{2}{N}$.

DAL

WEALTH

- What is a_5 ?
- a) $\frac{1}{10}$
- b) $-\frac{1}{10}$
- ,
- c) $\frac{3}{10}$
- d) $-\frac{3}{10}$
- 8) The sequence $\left\{\frac{n}{n+1}\right\}$ is
 - a) Increasing sequence
 - b) Decreasing sequence
 - c) Unbounded
 - d) None of these

9) The sequence
$$\left\{\frac{(-1)^n}{n}\right\}$$
 is

- a) Unbounded
- b) Decreasing
- c) Increasing
- d) None of these
- 10) The sequence $\left\{a + \frac{(-1)^n b}{n}\right\}$
 - a) Bounded
 - b) Unbounded
 - c) Increasing
 - d) None of these

Answers :

1) b 2) d 3) a 4) c 5) c 6) a 7) b 8) a 9) a 10) a

- 11) Define Infinite series.
- 12) Let $\sum a_n$ be a convergent series converging to the sum s. Then $\lim_{n \to \infty} a_n = 0$.
- 13) Discuss the convergence of the series $\sum \frac{1}{\sqrt{n^3+1}}$.
- 14) Discuss the convergence of the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \cdots$
- 15) Discuss the convergence of the series $\sum_{3}^{\infty} (\log \log n)^{-\log n}$.
- 16) Show that the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges to the sum 1.
- 17) Show that the series $1 + 2 + 3 + \cdots$ diverges to ∞ .
- 18) Discuss the convergence of the following series whose n^{th} terms are given $\frac{5+n}{3+n^2}$.
- 19) Discuss the convergence of the following series whose n^{th} terms are given $\frac{2n}{n^2+1}$.
- 20) Discuss the convergence of the following series whose n^{th} terms are given $\frac{\sqrt{n}}{\sqrt{n}}$.

5 Marks :

- 21) Let $\sum a_n$ converge to a and $\sum b_n$ converge to b then $(a_n \pm b_n) \rightarrow a \pm b$ and $\sum ka_n \rightarrow ka$.
- 22) Apply Cauchy's general principle of convergent . To show the series $\sum (1/n)$ is not convergent.
- 23) Applying Cauchy's general principle of convergent. Prove that $1 1/2 + 1/3 \dots + (-1)^n/n + \dots$ is convergent.
- 24) Discuss the convergence of the series $\sum \frac{1^2+2^2+\dots+n^2}{n^4+1}$
- 25) Discuss the convergence of the following series whose n^{th} terms are given $\frac{n^4-5n^2+1}{n^6+3n^2+2}.$
- 26) Discuss the convergence of the following series whose n^{th} terms are given

$$\frac{1}{n\sqrt{(n^2+1)}}$$

27) Discuss the convergence of the following series whose n^{th} terms are given

$$\frac{n}{(n^2+1)^{2/3}}$$

- 28) Prove that if $\sum c_n$ is a convergent series of positive terms then so is $\sum a_n c_n$ where (a_n) is a bounded sequence of positive terms is.
- 29) Show that if $\sum a_n$ converges and $\sum b_n$ diverges then $\sum (a_n + b_n)$ diverges.
- 30) Use the inequality $e^x > x$ if x > 0 to show that the series $\sum e^{-n^2}$ convergent.

- 31) State and prove Cauchy's general principal of convergence.
- 32) i) Let $\sum c_n$ be a convergent series of positive terms. Let $\sum a_n$ be another series of positive terms. If there exists $m \in N$ such that $a_n \leq c_n$ for all $n \geq m$ then $\sum a_n$ is also convergent.

ii) Let $\sum d_n$ be a divergent series of positive terms. Let $\sum a_n$ be another series of positive terms. If there exists $m \in N$ such that $a_n \ge d_n$ for all $n \ge m$ then $\sum a_n$ is also divergent.

33) i) If $\sum c_n$ converges and if $\lim_{n \to \infty} (\frac{a_n}{c_n})$ exists and is finite then $\sum a_n$ also converges.

ii) If $\sum d_n$ diverges and if $\lim_{n \to \infty} \left(\frac{a_n}{d_n}\right)$ exists and is greater than zero then $\sum a_n$ diverges.

34) i) Let $\sum c_n$ be a convergent series of positive terms. Let $\sum a_n$ be another series of positive terms. If there exists $m \in N$ such that $\frac{a_{n+1}}{a_n} \leq \frac{c_{n+1}}{c_n}$ for all $n \geq m$, then $\sum a_n$ is convergent.

ii) Let $\sum d_n$ be a divergent series of positive terms. Let $\sum a_n$ be another series of positive terms. If there exists $m \in N$ such that $\frac{a_{n+1}}{a_n} \ge \frac{d_{n+1}}{d_n}$ for all $n \ge m$, then $\sum a_n$ is divergent.

- 35) The harmonic series $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$
- 36) Discuss the convergence of the following series whose n^{th} terms are given $\frac{n}{(n^2+1)^{3/2}}$.
- 37) Show that $\sum \frac{1}{4n^2-1} = \frac{1}{2}$.
- 38) Prove that a sequence (a_n) is convergent iff $\sum (a_{n+1} a_n)$ is convergent.

- 39) Let *a* and *b* be two positive real numbers. Show that the series $a + b + a^2 + b^2 + a^3 + b^3 + ...$ converges if both *a* and *b* < 1 and diverges if either $a \ge 1$ or $b \ge 1$.
- 40) Discuss the convergence of the following series whose n^{th} terms are given $\frac{n(n+1)}{(n+2)(n+3)(n+4)}$

UNIT - V

Choose the correct Answer :

- 1) The series $\sum_{n=1}^{\infty} \frac{(-1)^n n^{500}}{(1.0001)^n}$
 - a) Converges absolutely.
 - b) Converges conditionally, but not absolutely.
 - c) Converges to +∞
 - d) Converges to -∞

2) The series
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \left(1 + \frac{1}{n^2}\right)$$
.

- a) Is bounded but divergent.
- b) Converges absolutely.
- c) Converges conditionally, but not absolutely.
- d) Converges to $+\infty$
- 3) Which of the following series converge?

- a) None of them
- b) I and III
- c) I and II
- d) II and III
- 4) The series $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$. Find the value of the series $\sum_{n=2}^{\infty} \left(\frac{2}{n}\right)^4$.

VEALTH

- a) $\frac{8\pi^4}{45}$ b) $16\left(\frac{\pi^4}{90} - 1\right)$
- **c)** 16
- d) -2

5) Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{2^n + n^4}{4^n + n^2}$$
 II. $\sum_{n=1}^{\infty} \frac{4^n}{5^n + n^2}$

- a) I only
- b) II only
- c) I and II
- d) None of these
- 6) Which of the following alternating series converge conditionally, but not absolutely?

I.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n \ln n}}$$
 II. $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\ln n)^2}$ III. $\sum_{n=2}^{\infty} \frac{\cos(\pi n)}{2^{n-3}}$

- a) None of them
- b) I only
- c) II only
- d) III only
- 7) For which values of p does the series $\sum_{n=1}^{\infty} \frac{e^n}{(2+e^{2n})^p}$ converge?
 - a) All values of p

b)
$$-1$$

- c) *p* > 1
- d) $p > \frac{1}{2}$
- 8) Let $\sum_{n=1}^{\infty} a_n$ be a series with partial sums S_N . Which of the following statements are always true?

WEALTH

- I. If $\lim_{n \to \infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.
- II. If $\sum_{n=1}^{\infty} a_n = L$, then $\lim_{n \to \infty} a_n = L$.
- III.If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.
- IV.If $\lim_{N \to \infty} S_N = L$, then $\sum_{n=1}^{\infty} a_n = L$.
- a) I and II
- b) I and III
- c) III and IV
- d) II and III
- 9) The sequence {1,0,1,0, ... } is
 - a) Increasing
 - b) Decreasing
 - c) Bounded

- d) None of these
- 10) The series $\sum_{n=1}^{\infty} \frac{1}{n^n}$ is
 - a) Convergent
 - b) Divergent
 - c) Oscillatory
 - d) None of these

Answers :

1) a 2) c 3) a 4) b 5) c 6) b 7) d 8) c 9) c 10) a

2 Marks :

- 11) Define D'Alembert's ratio test.
- 12) Statement of Cauchy's root test.
- 13) Statement of Leibnitz test.
- 14) Test the convergence of $\sum_{n^3} \frac{(-1)^n \sin n \infty}{n^3}$
- 15) Define conditionally convergent.
- 16) Test the convergent of $\sum_{n \log n}^{1}$.
- 17) Test the convergence of the series $\sum \frac{1}{n(\log n)^p}$.
- 18) Define Alternating series.
- 19) Show that the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$ converges.

IRUPPANANDAI

EALTH

20) Show that series $\sum (-1)^{n+1} \frac{n}{3n-2}$ oscillates.

- 21) Test the convergence $\sum \frac{n^n}{n!}$
- 22) Test the convergence of the series $\sum \frac{3^n n!}{n^n}$
- 23) Test the convergence of the series $\sum \frac{x^n}{n}$
- 24) Test the convergence of the series $\sum \frac{n^p}{n!}$ (p > 0).
- 25) Test the convergence of $\sum \frac{1}{(\log n)^n}$.
- 26) Show that the series $\sum \frac{(-1)^{n+1}}{\log(n+1)}$ converges.

- 27) Show that series $\sum \frac{(-1)^{n+1}}{\log(n+1)}$ converges.
- 28) Show that following series converges $\frac{1}{2^3} \frac{1}{3^3}(1+2) + \frac{1}{4^3}(1+2+3) \frac{1}{4^3}(1+2) + \frac{1}{4^3}(1+2+3)$

 $\frac{1}{5^3}(1+2+3+4)+\cdots$

- 29) Any absolutely convergent series is convergent.
- 30) Show that the series $\sum \frac{x^{n-1}}{(n-1)!}$ converges absolutely for all value of x.

10 marks :

- 31) Test the convergence of the series $\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \cdots$
- 32) Test the convergence of the series $\sum \frac{2^n n!}{n^n}$.
- 33) Test the convergence of the series $\sum \sqrt{\frac{n}{n+1}} \cdot x^n$ where x is any positive real number.
- 34) Test the convergence of the series $\sum \frac{n^2+1}{\zeta^n}$.
- 35) State and prove Cauchy's root test.
- 36) Prove that the series $\sum e^{-\sqrt{n}} x^n$ converges if 0 < x < 1 and diverges if x > 1.

IRUPPANANDAI

~/* + * + - + * + */~

- 37) Test the convergence of $\sum \frac{n^3+a}{2^n+a}$.
- 38) Test the convergence of series $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^3} + \cdots$
- 39) State and prove Leibnitz test.
- 40) Test for convergence of the series $\sum \frac{(-1)^n}{n^p}$.